由無(wú)理數(shù)引發(fā)的數(shù)學(xué)危機(jī)一直延續(xù)到19世紀(jì).直到1872年,德國(guó)數(shù)學(xué)家戴德金從連續(xù)性的要求出發(fā),用有理數(shù)的“分割”來(lái)定義無(wú)理數(shù)(史稱戴德金分割),并把實(shí)數(shù)理論建立在嚴(yán)格的科學(xué)基礎(chǔ)上,才結(jié)束了無(wú)理數(shù)被認(rèn)為“無(wú)理”的時(shí)代,也結(jié)束了持續(xù)2000多年的數(shù)學(xué)史上的第一次大危機(jī).所謂戴德金分割,是指將有理數(shù)集劃分為兩個(gè)非空的子集,且滿足,,中的每一個(gè)元素都小于中的每一個(gè)元素,則稱為戴德金分割.試判斷,對(duì)于任一戴德金分割,下列選項(xiàng)中,不可能成立的是( )

A.沒(méi)有最大元素,有一個(gè)最小元素

B.沒(méi)有最大元素,也沒(méi)有最小元素

C.有一個(gè)最大元素,有一個(gè)最小元素

D.有一個(gè)最大元素,沒(méi)有最小元素

C

【解析】

試題分析:A正確,例如M是所有的有理數(shù),N是所有的有理數(shù)。B正確,如M是所有負(fù)的有理數(shù),零和平方小于2的正有理數(shù),N是所有平方大于2的正有理數(shù)。顯然M和N的并集是所有的有理數(shù),因?yàn)槠椒降扔?的數(shù)不是有理數(shù)。D正確,如例如M是所有的有理數(shù),N是所有的有理數(shù)。C錯(cuò);M有最大元素a,且N有最小元素b是不可能的,因?yàn)檫@樣就有一個(gè)有理數(shù)不存在于M和N兩個(gè)集合中,與M和N的并集是所有的有理數(shù)矛盾

考點(diǎn):集合新定義問(wèn)題

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2014-2015學(xué)年河南省高二上學(xué)期第一次月考試?yán)砜茢?shù)學(xué)卷(解析版) 題型:填空題

在△ABC中,角A、B、C的對(duì)邊分別為a、b、c,且a=8,B=60°,C=75°,則

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014-2015學(xué)年廣東省山一等七校高三12月聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分12分)已知函數(shù)

(1)求函數(shù)的最小正周期;

(2)求函數(shù)在區(qū)間上的最小值和最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014-2015學(xué)年廣東省山一等七校高三12月聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分14分)已知兩點(diǎn)、,動(dòng)點(diǎn)、兩點(diǎn)連線的斜率滿足.

(Ⅰ)求動(dòng)點(diǎn)的軌跡的方程;

(Ⅱ)是曲線軸正半軸的交點(diǎn),曲線上是否存在兩點(diǎn),使得是以為直角頂點(diǎn)的等腰直角三角形?若存在,請(qǐng)說(shuō)明有幾個(gè);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014-2015學(xué)年廣東省山一等七校高三12月聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:填空題

已知平面內(nèi)的一個(gè)區(qū)域.:點(diǎn);:點(diǎn).如果的充分條件,那么區(qū)域的面積的最小值是_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014-2015學(xué)年廣東省山一等七校高三12月聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:選擇題

設(shè)向量,,且,方向相反,則的值是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014-2015學(xué)年廣東省肇慶市畢業(yè)班第一次統(tǒng)一檢測(cè)文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分12分)如圖,已知PA?⊙O所在的平面,AB是⊙O的直徑,AB=2,C是⊙O上一點(diǎn),且AC=BC=PA,E是PC的中點(diǎn),F(xiàn)是PB的中點(diǎn).

(1)求證:EF//平面ABC;

(2)求證:EF?平面PAC;

(3)求三棱錐B—PAC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014-2015學(xué)年廣東省肇慶市畢業(yè)班第一次統(tǒng)一檢測(cè)理科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分14分)如圖,四棱柱中,?底面ABCD,且. 梯形ABCD的面積為6,且AD//BC,AD=2BC,. 平面交于點(diǎn)E.

(1)證明:EC//;

(2)求三棱錐的體積;

(3)求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014-2015學(xué)年福建省四地六校高三上學(xué)期第三次月考理科數(shù)學(xué)試卷(解析版) 題型:解答題

將12cm長(zhǎng)的細(xì)鐵線截成三條長(zhǎng)度分別為、的線段,

(1)求以、為長(zhǎng)、寬、高的長(zhǎng)方體的體積的最大值;

(2)若這三條線段分別圍成三個(gè)正三角形,求這三個(gè)正三角形面積和的最小值。

查看答案和解析>>

同步練習(xí)冊(cè)答案