【題目】已知函數(shù)

處取極值,在點(diǎn)處的切線方程

)當(dāng)時(shí),有唯一的零點(diǎn),求證

【答案】(Ⅰ);(Ⅱ)見(jiàn)解析.

【解析】試題分析

本題考查導(dǎo)數(shù)的幾何意義及導(dǎo)數(shù)在研究函數(shù)單調(diào)性、極值中的應(yīng)用。根據(jù)函數(shù)在處取極值可得,然后根據(jù)導(dǎo)數(shù)的幾何意義求得切線方程即可。)由 ,,可得上單調(diào)遞減,在上單調(diào)遞增。結(jié)合函數(shù)的單調(diào)性和函數(shù)值可得上有唯一零點(diǎn),設(shè)為,證明即可得結(jié)論。

試題解析

,

,

處取極值,

,解得.

,

,

.

在點(diǎn)處的切線方程為,

)由 ,

,

,可得

上單調(diào)遞減,在上單調(diào)遞增。

,故當(dāng)時(shí), ;

,故上有唯一零點(diǎn),設(shè)為,

從而可知上單調(diào)遞減,在上單調(diào)遞增,

因?yàn)?/span>有唯一零點(diǎn),

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓)的左、右焦點(diǎn)分別為,設(shè)點(diǎn),在中, ,周長(zhǎng)為.

1)求橢圓的方程;

2)設(shè)不經(jīng)過(guò)點(diǎn)的直線與橢圓相交于、兩點(diǎn),若直線的斜率之和為,求證:直線過(guò)定點(diǎn),并求出該定點(diǎn)的坐標(biāo);

3)記第(2)問(wèn)所求的定點(diǎn)為,點(diǎn)為橢圓上的一個(gè)動(dòng)點(diǎn),試根據(jù)面積的不同取值范圍,討論存在的個(gè)數(shù),并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】【選修4—4:坐標(biāo)系與參數(shù)方程】

在直角坐標(biāo)系中,直線的參數(shù)方程為 (為參數(shù), 為直線的傾斜角). 以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn)x軸的正半軸為極軸,取相同的長(zhǎng)度單位,建立極坐標(biāo)系. C的極坐標(biāo)方程為,設(shè)直線l與圓C交于兩點(diǎn).

求角的取值范圍;

(Ⅱ)若點(diǎn)的坐標(biāo)為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知中心在原點(diǎn),焦點(diǎn)在軸上的橢圓的一個(gè)焦點(diǎn)為, 是橢圓上的一個(gè)點(diǎn).

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)設(shè)橢圓的上、下頂點(diǎn)分別為, )是橢圓上異于的任意一點(diǎn), 軸, 為垂足, 為線段中點(diǎn),直線交直線于點(diǎn), 為線段的中點(diǎn),如果的面積為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知是定義域?yàn)?/span>的奇函數(shù),且當(dāng)時(shí), ,設(shè)”.

(1)若為真,求實(shí)數(shù)的取值范圍;

(2)設(shè)集合與集合的交集為,若為假, 為真,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本小題滿(mǎn)分13分)已知數(shù)列的前項(xiàng)和為, 的等差中項(xiàng)

)求的通項(xiàng)公式;

)若數(shù)列項(xiàng)和為,且對(duì),恒成立,求實(shí)數(shù)的最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】【選修4-4:坐標(biāo)系與參數(shù)方程】

在平面直角坐標(biāo)系,已知曲線為參數(shù)),在以原點(diǎn)為極點(diǎn), 軸的非負(fù)半軸為極軸建立的極坐標(biāo)系中,直線的極坐標(biāo)方程為。

(1)求曲線的普通方程和直線的直角坐標(biāo)方程;

(2)過(guò)點(diǎn)且與直線平行的直線, 兩點(diǎn),求點(diǎn) 的距離之積。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的兩個(gè)焦點(diǎn)和短軸的兩個(gè)頂點(diǎn)構(gòu)成的四邊形是一個(gè)正方形,且其周長(zhǎng)為.

Ⅰ)求橢圓的方程;

Ⅱ)設(shè)過(guò)點(diǎn)的直線與橢圓相交于兩點(diǎn),點(diǎn)關(guān)于原點(diǎn)的對(duì)稱(chēng)點(diǎn)為,若點(diǎn)總在以線段為直徑的圓內(nèi),的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) .

(Ⅰ)求曲線在點(diǎn)處的切線方程

(Ⅱ)求證: ;

(Ⅲ)判斷曲線是否位于軸下方,并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案