某幾何體的三視圖如右圖(其中側(cè)視圖中的圓弧是半圓),則該幾何體的表面積為( )

A B. C. D.

 

A

【解析】

試題分析:由三視圖可知此幾何體是一個(gè)長(zhǎng)方體和一個(gè)半圓柱的組合體。長(zhǎng)方體底面長(zhǎng)為5,寬為4,高為4,圓柱底面圓的半徑為2,圓柱高位5,所以此幾何體的表面積為。故A正確。

考點(diǎn):三視圖

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)七十三第十章第十節(jié)練習(xí)卷(解析版) 題型:解答題

下表提供了某廠節(jié)能降耗技術(shù)改造后生產(chǎn)甲產(chǎn)品過(guò)程中記錄的產(chǎn)量x()與相應(yīng)的生產(chǎn)能耗y(噸標(biāo)準(zhǔn)煤)的幾組對(duì)照數(shù)據(jù).

x

3

4

5

6

y

2.5

3

4

4.5

(1)請(qǐng)畫(huà)出上表數(shù)據(jù)的散點(diǎn)圖.

(2)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程=bx+a.

(3)已知該廠技改前100噸甲產(chǎn)品的生產(chǎn)能耗為90噸標(biāo)準(zhǔn)煤.試根據(jù)(2)求出的回歸方程,預(yù)測(cè)生產(chǎn)100噸甲產(chǎn)品的生產(chǎn)能耗比技改前降低多少噸標(biāo)準(zhǔn)煤?

(參考數(shù)值:3×2.5+4×3+5×4+6×4.5=66.5)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高中數(shù)學(xué)全國(guó)各省市理科導(dǎo)數(shù)精選22道大題練習(xí)卷(解析版) 題型:解答題

設(shè),函數(shù)

1)若,求函數(shù)在區(qū)間上的最大值;

2)若,寫(xiě)出函數(shù)的單調(diào)區(qū)間(不必證明);

3)若存在,使得關(guān)于的方程有三個(gè)不相等的實(shí)數(shù)解,求實(shí)數(shù)的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年陜西省咸陽(yáng)市高考模擬考試(一)理科數(shù)學(xué)試卷(解析版) 題型:填空題

如圖,兩個(gè)等圓外切,過(guò)的兩條切線是切點(diǎn),點(diǎn)在圓上且不與點(diǎn)重合,則= .

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年陜西省咸陽(yáng)市高考模擬考試(一)理科數(shù)學(xué)試卷(解析版) 題型:選擇題

設(shè)的定義域?yàn)?/span>D,若滿足條件:存在,使上的值域是,則稱倍縮函數(shù)”.若函數(shù)倍縮函數(shù),則t的范圍是( )

A . B. C. D. 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年廣東省廣州市畢業(yè)班綜合測(cè)試一理科數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)(其中為自然對(duì)數(shù)的底數(shù)).

1)求函數(shù)的單調(diào)區(qū)間;

2)定義:若函數(shù)在區(qū)間上的取值范圍為,則稱區(qū)間為函數(shù)的“域同區(qū)間”.試問(wèn)函數(shù)上是否存在“域同區(qū)間”?若存在,求出所有符合條件的“域同區(qū)間”;若不存在,請(qǐng)說(shuō)明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年廣東省廣州市畢業(yè)班綜合測(cè)試一理科數(shù)學(xué)試卷(解析版) 題型:填空題

在極坐標(biāo)系中,直線與曲線相交于兩點(diǎn),若,則實(shí)數(shù)的值為 .

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年廣東省廣州市畢業(yè)班綜合測(cè)試一文科數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,在棱長(zhǎng)為的正方體中,點(diǎn)是棱的中點(diǎn),點(diǎn)在棱上,且滿足.

1)求證:;

2)在棱上確定一點(diǎn),使、、、四點(diǎn)共面,并求此時(shí)的長(zhǎng);

3)求幾何體的體積.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年(安徽專用)高考數(shù)學(xué)(文)仿真模擬卷1練習(xí)卷(解析版) 題型:解答題

如圖,在四棱錐PABCD中,側(cè)棱PA底面ABCD,底面ABCD為矩形,EPD上一點(diǎn),AD2AB2AP2PE2DE.

(1)FPE的中點(diǎn),求證:BF平面ACE;

(2)求三棱錐PACE的體積.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案