分析 建立坐標(biāo)系,求出三條棱與平面所成角的余弦值得出最大值.
解答 解:設(shè)四面體O-ABC中,OA,OB,OC兩兩垂直,且OA=1,OB=2,OC=3.
以O(shè)為原點(diǎn),以O(shè)A,OB,OC為坐標(biāo)軸建立空間直角坐標(biāo)系,如圖所示:
則A(1,0,0),B(0,2,0),C(0,0,3),
∴$\overrightarrow{AB}$=(-1,2,0),$\overrightarrow{AC}$=(-1,0,3).$\overrightarrow{OA}$=(1,0,0),$\overrightarrow{OB}$=(0,2,0),$\overrightarrow{OC}$=(0,0,3).
設(shè)平面ABC的法向量為$\overrightarrow{n}$,則$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{AB}=0}\\{\overrightarrow{n}•\overrightarrow{AC}=0}\end{array}\right.$,
∴$\left\{\begin{array}{l}{-x+2y=0}\\{-x+3z=0}\end{array}\right.$,令z=1,得$\overrightarrow{n}$=(3,$\frac{3}{2}$,1).
∴|cos<$\overrightarrow{OA},\overrightarrow{n}$>|=|$\frac{\overrightarrow{OA}•\overrightarrow{n}}{|\overrightarrow{OA}||\overrightarrow{n}|}$|=$\frac{3}{\frac{7}{2}}$=$\frac{6}{7}$.
|cos<$\overrightarrow{OB},\overrightarrow{n}$>|=|$\frac{\overrightarrow{OB}•\overrightarrow{n}}{|\overrightarrow{OB}||\overrightarrow{n}|}$|=$\frac{3}{2•\frac{7}{2}}$=$\frac{3}{7}$,
|cos<$\overrightarrow{OC},\overrightarrow{n}$>|=|$\frac{\overrightarrow{OC}•\overrightarrow{n}}{|\overrightarrow{OC}||\overrightarrow{n}|}$=$\frac{3}{3•\frac{7}{2}}$=$\frac{2}{7}$.
∴OA,OB,OC與平面ABC所成角的正弦值分別為$\frac{6}{7}$,$\frac{3}{7}$,$\frac{2}{7}$,
∴OA,OB,OC與平面ABC所成角的余弦值分別為$\frac{\sqrt{13}}{7}$,$\frac{2\sqrt{10}}{7}$,$\frac{3\sqrt{5}}{7}$.
∴三條棱與平面ABC所成角的余弦值最大為$\frac{3\sqrt{5}}{7}$.
故答案為:$\frac{3\sqrt{5}}{7}$
點(diǎn)評(píng) 本題考查了空間向量與線面角的計(jì)算,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | π | B. | 2π | C. | 3π | D. | 4π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-$\frac{10}{3}$,-2) | B. | (-∞,-2) | C. | -$\frac{34}{15}$<t<-2 | D. | (-1,2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 30° | B. | 45° | C. | 60° | D. | 90° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{{\sqrt{3}}}{2}$ | C. | $-\frac{1}{2}$ | D. | $-\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com