已知{an}為等差數(shù)列,a3+a8=22,a6=7,則a5=


  1. A.
    20
  2. B.
    25
  3. C.
    10
  4. D.
    15
D
分析:利用等差數(shù)列的性質(zhì)a3+a8=a5+a6直接求解即可.
解答:由等差數(shù)列的性質(zhì)可得a3+a8=a5+a6,
∴a5=22-7=15,
故選D.
點(diǎn)評(píng):本題考查了等差數(shù)列的性質(zhì),恰當(dāng)?shù)剡\(yùn)用性質(zhì),可有效地簡(jiǎn)化計(jì)算.
{an}為等差數(shù)列,當(dāng)m+n=p+q(m,n,p,q∈N+)時(shí),am+an=ap+aq
特例:若m+n=2p(m,n,p∈N+),則am+an=2ap
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知命題:“在等差數(shù)(an)中,若4a2+a10+a( 。=24,則S11為定值”為真命題,由于印刷問題,括號(hào)處的數(shù)模糊不清,可推得括號(hào)內(nèi)的數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)an的前n項(xiàng)和為Sn,S10=
3
0
(1+3x)dx
,則a5+a6=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)到{an}中,a1=120,公差d=-4,Sn為其前n項(xiàng)和,若Sn≤an(n≥2).則n的最小值為(    )

A.60                  B.62              C.70               D.72

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知命題:“在等差數(shù)(an)中,若4a2+a10+a( 。=24,則S11為定值”為真命題,由于印刷問題,括號(hào)處的數(shù)模糊不清,可推得括號(hào)內(nèi)的數(shù)為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2009年江蘇省蘇州市高三教學(xué)調(diào)研數(shù)學(xué)試卷(解析版) 題型:解答題

已知命題:“在等差數(shù)(an)中,若4a2+a10+a( )=24,則S11為定值”為真命題,由于印刷問題,括號(hào)處的數(shù)模糊不清,可推得括號(hào)內(nèi)的數(shù)為   

查看答案和解析>>

同步練習(xí)冊(cè)答案