9.數(shù)列{an}的前n項和為Sn,若an=$\frac{1}{n(n+1)}$,則S4=$\frac{4}{5}$.

分析 an=$\frac{1}{n(n+1)}$=$\frac{1}{n}-\frac{1}{n+1}$,利用“裂項求和”方法即可得出.

解答 解:∵an=$\frac{1}{n(n+1)}$=$\frac{1}{n}-\frac{1}{n+1}$,
∴S4=$(1-\frac{1}{2})+(\frac{1}{2}-\frac{1}{3})$+$(\frac{1}{3}-\frac{1}{4})$+$(\frac{1}{4}-\frac{1}{5})$=1-$\frac{1}{5}$=$\frac{4}{5}$.
故答案為:$\frac{4}{5}$.

點評 本題考查了“裂項求和”方法、數(shù)列的通項公式與求和公式,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知|$\overrightarrow a}$|=|${\overrightarrow b}$|=|${\overrightarrow c}$|=1,且$\overrightarrow a+\overrightarrow b+\overrightarrow c=\overrightarrow 0$,則$\overrightarrow a$與$\overrightarrow b$的夾角為$\frac{2π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.設(shè)函數(shù)f(x)的導(dǎo)數(shù)為f′(x),且f(x)=f′($\frac{π}{6}$)cosx+sinx,則f′($\frac{π}{3}$)=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知全集U=R,集合A={x|(x-1)(x+3)≥0},集合B={x|($\frac{1}{3}$)x<9},則(∁UA)∪B=( 。
A.(-2,1)B.(-3,+∞)C.(-∞,-3)∪(-2,+∞)D.(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知直線l與雙曲線$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1交于A、B兩點,現(xiàn)取AB的中點M在第一象限,并且在拋物線y2=4x上,M到拋物線焦點的距離為2,則直線l的斜率為(  )
A.1B.2C.$\frac{3}{2}$D.$\frac{5}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知θ∈(0,$\frac{π}{4}$),且sinθ-cosθ=-$\frac{\sqrt{14}}{4}$,則$\frac{2co{s}^{2}θ-1}{sin(\frac{π}{4}-θ)}$等于$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.在區(qū)間[-$\frac{π}{2}$,$\frac{π}{6}$]上隨機取一個數(shù)x,則(sinx-cosx)∈[-$\sqrt{2}$,-1]的概率是$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知點A是拋物線y=$\frac{1}{4}$x2的對稱軸與準線的交點,點F為該拋物線的焦點,點P在拋物線上且滿足|PF|=m|PA|,當m取最小值時,點P恰好在以A,F(xiàn)為焦點的雙曲線上,則該雙曲線的離心率為$\sqrt{2}$+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.某網(wǎng)絡(luò)營銷部門為了統(tǒng)計某市網(wǎng)友2015年11月11日在某網(wǎng)店的網(wǎng)購情況,隨機抽查了該市100名網(wǎng)友的網(wǎng)購金額情況,得到如圖頻率分布直方圖.
(1)估計直方圖中網(wǎng)購金額的中位數(shù);
(2)若規(guī)定網(wǎng)購金額超過15千元的顧客定義為“網(wǎng)購達人”,網(wǎng)購金額不超過15千元的顧客定義為“非網(wǎng)購達人”;若以該網(wǎng)店的頻率估計全市“非網(wǎng)購達人”和“網(wǎng)購達人”的概率,從全市任意選取3人,則3人中“非網(wǎng)購達人”與“網(wǎng)購達人”的人數(shù)之差的絕對值為X,求X的分布列與數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案