(12分)如圖,已知橢圓(a>b>0)的離心率,過點(diǎn) 和的直線與原點(diǎn)的距離為.
(1)求橢圓的方程;
(2)已知定點(diǎn),若直線與橢圓交于、兩 點(diǎn).問:是否存在的值,
使以為直徑的圓過點(diǎn)?請說明理由.
(1).(2)存在,使得以CD為直徑的圓過點(diǎn)E。
解析試題分析:(1)設(shè)橢圓的標(biāo)準(zhǔn)方程,根據(jù)離心率求得a和c關(guān)系,進(jìn)而根據(jù)a求得b,則橢圓的方程可得.
(2)由題意知,直線l的參數(shù)方程,代入橢圓方程聯(lián)立消去x,y,要使以CD為直徑的圓過點(diǎn)E(-1,0),當(dāng)且僅當(dāng)CE⊥DE時成立,利用關(guān)系式得到k的值。
解:(1)直線AB方程為:bx-ay-ab=0.
依題意 解得
∴ 橢圓方程為. 4分
(2)假若存在這樣的k值,
由得 .6分
∴ 、
設(shè),、,,則 ② 8分
而.
要使以CD為直徑的圓過點(diǎn)E(-1,0),當(dāng)且僅當(dāng)CE⊥DE時,則,即
∴ 、
將②式代入③整理解得. 經(jīng)驗(yàn)證,,使①成立.
綜上可知,存在,使得以CD為直徑的圓過點(diǎn)E. 12分
考點(diǎn):本題主要考查了橢圓的方程與其幾何性質(zhì)的運(yùn)用。直線與圓錐曲線的綜合問題.此類題綜合性強(qiáng),要求學(xué)生要有較高地轉(zhuǎn)化數(shù)學(xué)思想的運(yùn)用能力,能將已知條件轉(zhuǎn)化到基本知識的運(yùn)用.
點(diǎn)評:解決該試題的關(guān)鍵是熟悉圓錐曲線的基本性質(zhì),能運(yùn)用a,b,c準(zhǔn)確表示,而對于是否存在要使以CD為直徑的圓過點(diǎn)E,轉(zhuǎn)化為垂直的關(guān)系式得到。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分)
已知橢圓的中心在原點(diǎn),焦點(diǎn)在坐標(biāo)軸上,直線與該橢圓相交于和,且,,求橢圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)已知雙曲線的一條漸近線方程是,若雙曲線經(jīng)過點(diǎn),求此雙曲線的標(biāo)準(zhǔn)方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)設(shè)橢圓()經(jīng)過點(diǎn),其離心率.
(Ⅰ)求橢圓的方程;
(Ⅱ) 直線交橢圓于兩點(diǎn),且的面積為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)
已知拋物線的頂點(diǎn)為坐標(biāo)原點(diǎn),焦點(diǎn)在軸上. 且經(jīng)過點(diǎn),
(1)求拋物線的方程;
(2)若動直線過點(diǎn),交拋物線于兩點(diǎn),是否存在垂直于軸的直線被以為直徑的圓截得的弦長為定值?若存在,求出的方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓過點(diǎn),且離心率。
(Ⅰ)求橢圓方程;
(Ⅱ)若直線與橢圓交于不同的兩點(diǎn)、,且線段的垂直平分線過定點(diǎn),求的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題16分)在平面直角坐標(biāo)系中,是拋物線的焦點(diǎn),是拋物線上位于第一象限內(nèi)的任意一點(diǎn),過三點(diǎn)的圓的圓心為,點(diǎn)到拋物線的準(zhǔn)線的距離為.
(Ⅰ)求拋物線的方程;
(Ⅱ)是否存在點(diǎn),使得直線與拋物線相切于點(diǎn)?若存在,求出點(diǎn)的坐標(biāo);若不存在,說明理由;
(Ⅲ)若點(diǎn)的橫坐標(biāo)為,直線與拋物線有兩個不同的交點(diǎn),與圓有兩個不同的交點(diǎn),求當(dāng)時,的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分13分)在平面直角坐標(biāo)系中,已知橢圓:()的左焦點(diǎn)為,且點(diǎn)在上.
(Ⅰ)求橢圓的方程;
(Ⅱ)已知直線的斜率為2且經(jīng)過橢圓的左焦點(diǎn).求直線與該橢圓相交的弦長。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,設(shè)橢圓的中心為原點(diǎn)O,長軸在x軸上,上頂點(diǎn)為A,左右焦點(diǎn)分別為,線段的中點(diǎn)分別為,且△ 是面積為4的直角三角形.
(Ⅰ)求該橢圓的離心率和標(biāo)準(zhǔn)方程;
(Ⅱ)過做直線交橢圓于P,Q兩點(diǎn),使,求直線的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com