【題目】某購物商場(chǎng)分別推出支付寶和微信“掃碼支付”購物活動(dòng),活動(dòng)設(shè)置了一段時(shí)間的推廣期,由于推廣期內(nèi)優(yōu)惠力度較大,吸引越來越多的人開始使用“掃碼支付”.現(xiàn)統(tǒng)計(jì)了活動(dòng)剛推出一周內(nèi)每天使用掃碼支付的人次,用表示活動(dòng)推出的天數(shù),表示每天使用掃碼支付的人次,統(tǒng)計(jì)數(shù)據(jù)如下表所示:
(1)根據(jù)散點(diǎn)圖判斷,在推廣期內(nèi),掃碼支付的人次關(guān)于活動(dòng)推出天數(shù)的回歸方程適合用來表示,求出該回歸方程,并預(yù)測(cè)活動(dòng)推出第天使用掃碼支付的人次;
(2)推廣期結(jié)束后,商場(chǎng)對(duì)顧客的支付方式進(jìn)行統(tǒng)計(jì),結(jié)果如下表:
支付方式 | 現(xiàn)金 | 會(huì)員卡 | 掃碼 |
比例 |
商場(chǎng)規(guī)定:使用現(xiàn)金支付的顧客無優(yōu)惠,使用會(huì)員卡支付的顧客享受折優(yōu)惠,掃碼支付的顧客隨機(jī)優(yōu)惠,根據(jù)統(tǒng)計(jì)結(jié)果得知,使用掃碼支付的顧客,享受折優(yōu)惠的概率為,享受折優(yōu)惠的概率為,享受折優(yōu)惠的概率為.現(xiàn)有一名顧客購買了元的商品,根據(jù)所給數(shù)據(jù)用事件發(fā)生的頻率來估計(jì)相應(yīng)事件發(fā)生的概率,估計(jì)該顧客支付的平均費(fèi)用是多少?
參考數(shù)據(jù):設(shè),,,
參考公式:對(duì)于一組數(shù)據(jù),,…,,其回歸直線的斜率和截距的最小二乘估計(jì)公式分別為:,.
【答案】(1)回歸方程為:;活動(dòng)推出第8天使用掃碼支付的人次為331(2)一名顧客購物的平均費(fèi)用為元
【解析】
(1)由,兩邊同時(shí)取常用對(duì)數(shù)得:;設(shè),則,利用最小二乘法求出,進(jìn)而求得回歸方程;再將代入方程進(jìn)行預(yù)報(bào)值求解;
(2)記一名顧客購物支付的費(fèi)用為,寫出的所有可能取值和隨機(jī)變量的分布列,從而求得顧客支付的平均費(fèi)用.
(1)由,兩邊同時(shí)取常用對(duì)數(shù)得:;
設(shè)
,,
,
把樣本中心點(diǎn)代入,得:,
,
關(guān)于的回歸方程為:;
把代入上式,;
活動(dòng)推出第8天使用掃碼支付的人次為331;
(2)記一名顧客購物支付的費(fèi)用為,
則的取值可能為:,,,;
;;
;
分布列為:
所以,一名顧客購物的平均費(fèi)用為:
(元)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《普通高中數(shù)學(xué)課程標(biāo)準(zhǔn)(2017版)》提出了數(shù)學(xué)學(xué)科的六大核心素養(yǎng).為了比較甲、乙兩名高二學(xué)生的數(shù)學(xué)核心素養(yǎng)水平,現(xiàn)以六大素養(yǎng)為指標(biāo)對(duì)二人進(jìn)行了測(cè)驗(yàn),根據(jù)測(cè)驗(yàn)結(jié)果繪制了雷達(dá)圖(如圖,每項(xiàng)指標(biāo)值滿分為5分,分值高者為優(yōu)),則下面敘述正確的是( )
A.甲的數(shù)據(jù)分析素養(yǎng)高于乙
B.甲的數(shù)學(xué)建模素養(yǎng)優(yōu)于數(shù)學(xué)抽象素養(yǎng)
C.乙的六大素養(yǎng)中邏輯推理最差
D.乙的六大素養(yǎng)整體平均水平優(yōu)于甲
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是邊長為4的菱形,∠BAD=60°,對(duì)角線AC與BD相交于點(diǎn)O,四邊形ACFE為梯形,EF//AC,點(diǎn)E在平面ABCD上的射影為OA的中點(diǎn),AE與平面ABCD所成角為45°.
(Ⅰ)求證:BD⊥平面ACF;
(Ⅱ)求平面DEF與平面ABCD所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在三棱錐P﹣ABC中,平面PBC⊥平面ABC,∠ACB=90°,BC=PC=2,若AC=PB,則三棱錐P﹣ABC體積的最大值為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校高三年級(jí)有男生人,學(xué)號(hào)為,,,;女生人,學(xué)號(hào)為,,,.對(duì)高三學(xué)生進(jìn)行問卷調(diào)查,按學(xué)號(hào)采用系統(tǒng)抽樣的方法,從這名學(xué)生中抽取人進(jìn)行問卷調(diào)查(第一組采用簡單隨機(jī)抽樣,抽到的號(hào)碼為);再從這名學(xué)生中隨機(jī)抽取人進(jìn)行數(shù)據(jù)分析,則這人中既有男生又有女生的概率是( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A.命題“若,則”的否命題為:“若,則”
B.命題“存在,使得”的否定是:“對(duì)任意,均有”
C.命題“角的終邊在第一象限角,則是銳角”的逆否命題為真命題
D.已知是上的可導(dǎo)函數(shù),則“”是“是函數(shù)的極值點(diǎn)”的必要不充分條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),.
(1)若曲線在點(diǎn)處的切線與直線垂直,求的單調(diào)性和極小值(其中為自然對(duì)數(shù)的底數(shù));
(2)若對(duì)任意的,恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三棱柱中,底面為等邊三角形,E,F分別為,的中點(diǎn),,.
(1)證明:平面;
(2)求直線與平面所成角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知四棱錐中,面面,底面為矩形,且,,,O為的中點(diǎn),點(diǎn)E在上,且.
(1)證明:;
(2)在上是否存在一點(diǎn)F,使面,若存在,試確定點(diǎn)F的位置.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com