4.已知O為坐標(biāo)原點(diǎn),點(diǎn)A(1,0),若點(diǎn)M(x,y)為平面區(qū)域$\left\{{\begin{array}{l}{x+y≥2}\\{x≤1}\\{y≤2}\end{array}}\right.$內(nèi)的一個動點(diǎn),則$|{\overrightarrow{OA}+\overrightarrow{OM}}|$的最小值為( 。
A.3B.$\sqrt{5}$C.$\frac{{3\sqrt{2}}}{2}$D.$\sqrt{2}$

分析 畫出約束條件的可行域,化簡向量的模,利用表達(dá)式的幾何意義求解即可.

解答 解:作出平面區(qū)域如圖中陰影部分所示,
$|{\overrightarrow{OA}+\overrightarrow{OM}}|=\sqrt{{{(x+1)}^2}+{y^2}}$表示點(diǎn)B(-1,0)到點(diǎn)M(x,y)的距離.由圖可知,所求最小值即是點(diǎn)B到直線x+y-2=0的距離$d=\frac{{|{-1-2}|}}{{\sqrt{2}}}=\frac{{3\sqrt{2}}}{2}$.
故選:C.

點(diǎn)評 本題考查簡單線性規(guī)劃的應(yīng)用,考查計算能力以及數(shù)形結(jié)合的應(yīng)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.在正方體ABCD-A1B1C1D1中,已知M,N分別是AB1,BB1的中點(diǎn),則直線AM與CN所成角的余弦值為( 。
A.$\frac{2}{3}$B.$\frac{\sqrt{10}}{10}$C.$\frac{2}{5}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知復(fù)數(shù)z=$\frac{3+4i}{1+2i}$(i為虛數(shù)單位),則復(fù)數(shù)z的共軛復(fù)數(shù)的虛部為( 。
A.-$\frac{2}{5}$iB.$\frac{2}{5}i$C.$\frac{4}{5}$D.$\frac{2}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,所有棱長都為2的正三棱柱BCD-B'C'D',四邊形ABCD是菱形,其中E為BD的中點(diǎn).
(1)求證:平面BC'D∥面AB'D';
(2)求證:平面C'CE⊥平面AB'D'.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知i是虛數(shù)單位,若復(fù)數(shù)-3i(a+i)(a∈R)的實(shí)部與虛部相等,則a=( 。
A.-1B.-2C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.如圖,正方形ABCD的邊長為3,點(diǎn)E,F(xiàn)分別在邊AB,BC上,且$\frac{AE}{EB}$=$\frac{CF}{FB}$=2,將此正方形沿DE,DF折起,使點(diǎn)A,C重合于點(diǎn)P,若O為線段EF任一點(diǎn),DO與平面PEF所成的角為θ,則tanθ的最大值是$\frac{3\sqrt{14}}{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.如圖,在矩形ABCD中,E,F(xiàn)分別為AD上的兩點(diǎn),已知∠CAD=θ,∠CED=2θ,∠CFD=4θ,AE=600,EF=200$\sqrt{3}$,則CD=300.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知A,B,P是直線l上三個相異的點(diǎn),平面內(nèi)的點(diǎn)O∉l,若正實(shí)數(shù)x,y滿足$4\overrightarrow{OP}=2x\overrightarrow{OA}+y\overrightarrow{OB}$,則$\frac{1}{x}+\frac{1}{y}$的最小值為(  )
A.$\frac{{\sqrt{2}}}{2}$B.$\frac{{3+2\sqrt{2}}}{4}$C.$\frac{{3+\sqrt{2}}}{4}$D.$\frac{{3-\sqrt{2}}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=ex,g(x)=lnx+2.
(I)當(dāng)x>0時,求證:f(x)>g(x);
(Ⅱ)當(dāng)x≥1時,若不等式f(x)≥2ax-a≥g(x)-$\frac{3}{2}$恒成立,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案