12.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>b>0)與拋物線y2=8x有一個共同的焦點(diǎn)F,兩曲線的一個交點(diǎn)P,若|PF|=5,則點(diǎn)F到雙曲線的漸近線的距離為$\sqrt{3}$.

分析 根據(jù)拋物線和雙曲線有相同的焦點(diǎn)求得p和c的關(guān)系,根據(jù)拋物線的定義可以求出P的坐標(biāo),代入雙曲線方程與p=2c,b2=c2-a2,解得a,b,得到漸近線方程,再由點(diǎn)到直線的距離公式計算即可得到.

解答 解:∵拋物線y2=8x的焦點(diǎn)坐標(biāo)F(2,0),p=4,
拋物線的焦點(diǎn)和雙曲線的焦點(diǎn)相同,
∴p=2c,即c=2,
∵設(shè)P(m,n),由拋物線定義知:
|PF|=m+$\frac{p}{2}$=m+2=5,∴m=3.
∴P點(diǎn)的坐標(biāo)為(3,$±2\sqrt{6}$)
∴$\left\{\begin{array}{l}{{a}^{2}+^{2}=4}\\{\frac{9}{{a}^{2}}-\frac{24}{^{2}}=1}\end{array}\right.$解得:a=1,b=$\sqrt{3}$,
則漸近線方程為y=$±\sqrt{3}$x,
即有點(diǎn)F到雙曲線的漸進(jìn)線的距離為d=$\frac{2\sqrt{3}}{\sqrt{3+1}}$=$\sqrt{3}$,
故答案為:$\sqrt{3}$.

點(diǎn)評 本題主要考查了雙曲線,拋物線的簡單性質(zhì).考查了學(xué)生綜合分析問題和基本的運(yùn)算能力.解答關(guān)鍵是利用性質(zhì)列出方程組.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.王昌齡《從軍行》中兩句詩為“黃沙百戰(zhàn)穿金甲,不破樓蘭終不還”,其中后一句“攻破樓蘭”是“返回家鄉(xiāng)”的( 。
A.充要條件B.既不充分也不必要條件
C.充分條件D.必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若復(fù)數(shù)z滿足z-1=$\frac{(i-1)^{2}+2}{1+i}$(i為虛數(shù)單位),則z在復(fù)平面內(nèi)對應(yīng)的點(diǎn)位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知向量$\overrightarrow a$與$\overrightarrow b$的夾角為60,$|{\overrightarrow a}|=4,|{\overrightarrow b}|=1,則\overrightarrow b⊥(\overrightarrow a-x•\overrightarrow b)$時,實(shí)數(shù)x為( 。
A.4B.2C.lD.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.某大學(xué)高等數(shù)學(xué)老師這學(xué)期分別用A、B兩種不同的教學(xué)方式試驗(yàn)甲、乙兩個大一新班(人數(shù)均為60人,入學(xué)數(shù)學(xué)平均分?jǐn)?shù)和優(yōu)秀率都相同;勤奮程度和自覺性都一樣).現(xiàn)隨機(jī)抽取甲、乙兩班各20名的高等數(shù)學(xué)期末考試成績,得到莖葉圖如圖:
(1)學(xué)校規(guī)定:成績不得低于85分的為優(yōu)秀,請?zhí)顚懭绫淼?×2列聯(lián)表,并判斷“能否在犯錯誤的概率不超過0.025的前提下認(rèn)為成績優(yōu)秀與教學(xué)方式有關(guān)?”
甲班乙班合計
優(yōu)秀
不優(yōu)秀
合計
下面臨界值表僅供參考:
P(k2≥k)0.150.100.050.0250.100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)
(2)現(xiàn)從甲班高等數(shù)學(xué)成績不得低于80分的同學(xué)中隨機(jī)抽取兩名同學(xué),求成績?yōu)?6分的同學(xué)至少有一個被抽中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖,在以A,B,C,D,E,F(xiàn)為頂點(diǎn)的多面體中,AF⊥平面ABCD,DE⊥平面ABCD,AD∥BC,AB=CD,∠ABC=60°,BC=AF=2AD=4DE=4.
(Ⅰ)請?jiān)趫D中作出平面α,使得DE?α,且BF∥α,并說明理由;
(Ⅱ)求直線EF與平面BCE所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{x≥0}\\{x-2y≥0}\\{y≥x-1}\end{array}\right.$,則z=ax+y(a>0)的最小值為( 。
A.0B.aC.2a+1D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.如圖中的程序框圖的算法思路來源于我國古代數(shù)學(xué)名著《九章算術(shù)》中的”更相減損術(shù)“.執(zhí)行該程序框圖,若輸入a,b,i的值分別為6,8,0時,則輸出的i=( 。
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知橢圓$\frac{{x}^{2}}{5}$+$\frac{{y}^{2}}{4}$=1,直線mx+y+m-1=0,那么直線與橢圓位置關(guān)系( 。
A.相交B.相離C.相切D.不確定

查看答案和解析>>

同步練習(xí)冊答案