(13分)如圖,設(shè)F是橢圓的左焦點(diǎn),直線l為其左準(zhǔn)線,直線l與x軸交于點(diǎn)P,線段MN為橢圓的長(zhǎng)軸,已知

   (1)求橢圓C的標(biāo)準(zhǔn)方程;

   (2)若過(guò)點(diǎn)P的直線與橢圓相交于不同兩點(diǎn)A、B求證:∠AFM=∠BFN;

   (3)求三角形ABF面積的最大值。

解析:(1)

 ………………………………(文6分,理4分)(2)(2)當(dāng)AB的斜率為0時(shí),顯然滿(mǎn)足題意

當(dāng)AB的斜率不為0時(shí),設(shè),AB方程為代入橢圓方程

整理得

 

綜上可知:恒有.………………………………(文13分,理9分)

(3)

當(dāng)且僅當(dāng)(此時(shí)適合△>0的條件)取得等號(hào).

三角形ABF面積的最大值是………………………………(理13分)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2008-2009學(xué)年湖北省武漢市教科院高三(上)第一次調(diào)考數(shù)學(xué)試卷(文理合卷)(解析版) 題型:解答題

如圖,設(shè)F是橢圓的左焦點(diǎn),直線l為對(duì)應(yīng)的準(zhǔn)線,直線l與x軸交于P點(diǎn),線段MN為橢圓的長(zhǎng)軸,已知|MN|=8,且|PM|=2|MF|.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)求證:對(duì)于任意的割線PAB,恒有∠AFM=∠BFN;
(Ⅲ)求三角形△ABF面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年天津25中高三(下)月考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

如圖,設(shè)F是橢圓的左焦點(diǎn),直線l為左準(zhǔn)線,直線l與x軸交于P點(diǎn),MN為橢圓的長(zhǎng)軸,已知,且
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)過(guò)點(diǎn)P作直線與橢圓交于A、B兩點(diǎn),求△ABF面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012年湖北省天門(mén)市岳口高中高考數(shù)學(xué)沖刺試卷3(理科)(解析版) 題型:解答題

如圖,設(shè)F是橢圓的左焦點(diǎn),直線l為對(duì)應(yīng)的準(zhǔn)線,直線l與x軸交于P點(diǎn),線段MN為橢圓的長(zhǎng)軸,已知|MN|=8,且|PM|=2|MF|.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)求證:對(duì)于任意的割線PAB,恒有∠AFM=∠BFN;
(Ⅲ)求三角形△ABF面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2008年北京市石景山區(qū)高考數(shù)學(xué)一模試卷(文科)(解析版) 題型:解答題

如圖,設(shè)F是橢圓的左焦點(diǎn),直線l為左準(zhǔn)線,直線l與x軸交于P點(diǎn),MN為橢圓的長(zhǎng)軸,已知,且
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)過(guò)點(diǎn)P作直線與橢圓交于A、B兩點(diǎn),求△ABF面積的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案