在△ABC中,已知點A(5,-2)、B(7,3),且邊AC的中點M在y軸上,邊BC的中點N在x軸上.
(1)求點C的坐標;
(2)求直線MN的方程.
分析:(1)邊AC的中點M在y軸上,由中點公式得,A,C兩點的橫坐標和的平均數(shù)為0,同理,B,C兩點的縱坐標和的平均數(shù)為0.構造方程易得C點的坐標.
(2)根據(jù)C點的坐標,結合中點公式,我們可求出M,N兩點的坐標,代入兩點式即可求出直線MN的方程.
解答:解:(1)設點C(x,y),
∵邊AC的中點M在y軸上得
5+x
2
=0,
∵邊BC的中點N在x軸上得
3+y
2
=0,
解得x=-5,y=-3.
故所求點C的坐標是(-5,-3).
(2)點M的坐標是(0,-
5
2
),
點N的坐標是(1,0),
直線MN的方程是
y-0
-
5
2
-0
=
x-1
0-1
,
即5x-2y-5=0.
點評:在求直線方程時,應先選擇適當?shù)闹本方程的形式,并注意各種形式的適用條件,用斜截式及點斜式時,直線的斜率必須存在,而兩點式不能表示與坐標軸垂直的直線,截距式不能表示與坐標軸垂直或經過原點的直線,故在解題時,若采用截距式,應注意分類討論,判斷截距是否為零;若采用點斜式,應先考慮斜率不存在的情況.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2013•福建)如圖,在△ABC中,已知點D在BC邊上,AD⊥AC,sin∠BAC=
2
2
3
,AB=3
2
,AD=3,則BD的長為
3
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,已知點D為邊BC的靠近點B的三等分點,設
AB
=
a
,
AC
=
b
,則
CD
=( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,已知點A(5,-2),B(7,3),且AC邊的中點M在y軸上,BC邊的中點N在x軸上,則直線MN的方程為( 。
A、5x一2y一5=0B、2x一5y一5=0C、5x-2y+5=0D、2x-5y+5=0

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年廣東省汕尾市陸豐市啟恩中學高三數(shù)學專題練習:解析幾何(理科)(解析版) 題型:解答題

在△ABC中,已知點A(5,-2)、B(7,3),且邊AC的中點M在y軸上,邊BC的中點N在x軸上.
(1)求點C的坐標;
(2)求直線MN的方程.

查看答案和解析>>

同步練習冊答案