8.已知p:函數(shù)f(x)=$\frac{1}{3}$x3-$\frac{1}{2}$ax2+x+b在R上是增函數(shù),q:函數(shù)f(x)=xa-2在(0,+∞)上是增函數(shù),則p是¬q的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

分析 根據(jù)函數(shù)單調(diào)性和導(dǎo)數(shù)的關(guān)系結(jié)合函數(shù)單調(diào)性的性質(zhì)分別求出p,q的等價(jià)條件,結(jié)合充分條件和必要條件的定義進(jìn)行判斷即可.

解答 解:若函數(shù)f(x)=$\frac{1}{3}$x3-$\frac{1}{2}$ax2+x+b在R上是增函數(shù),
則f′(x)=x2-ax+1≥0恒成立,即判別式△=a2-4≤0,則-2≤a≤2,即p:-2≤a≤2,
若函數(shù)f(x)=xa-2在(0,+∞)上是增函數(shù),則a-2>0,即a>2,即q:a>2,¬q:a≤2,
則p是¬q的充分不必要條件,
故選:A

點(diǎn)評(píng) 本題主要考查充分條件和必要條件的判斷,結(jié)合函數(shù)單調(diào)性的性質(zhì)進(jìn)行轉(zhuǎn)化求解是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.雙曲線$\frac{x^2}{4}-\frac{y^2}{12}$=1的右焦點(diǎn)與左準(zhǔn)線之間的距離是5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知命題p:“如果xy=0,那么x=0或y=0”,在命題p的逆命題,否命題,逆否命題三個(gè)命題中,真命題的個(gè)數(shù)是( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.正方體12條棱所在直線中成異面直線的有24對(duì).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.某種汽車購(gòu)車時(shí)的費(fèi)用為10萬(wàn)元,每年保險(xiǎn)、養(yǎng)路費(fèi)、汽油費(fèi)共1.5萬(wàn)元,如果汽車的維修費(fèi)第1年0.1萬(wàn)元,從第2年起,每年比上一年多0.2萬(wàn)元,這種汽車最多使用10年報(bào)廢最合算(即平均每年費(fèi)用最少).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知函數(shù)f(x)=(x-1)ex+ax2,a∈R.
(Ⅰ)討論函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若f(x)有兩個(gè)零點(diǎn),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.設(shè)函數(shù)$f(x)=\left\{\begin{array}{l}{2^{1-x}}\;,x≤1\\ 1-{log_2}x\;,x>1\end{array}\right.$,則f[f(-1)]=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.復(fù)數(shù)3i(1+i)的實(shí)部和虛部分別為( 。
A.3,3B.-3,3C.3,3iD.-3,3i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,已知3acosC=2ccosA,$tanC=\frac{1}{2}$,
(Ⅰ)求B;
(Ⅱ)若b=5,求△ABC的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案