【題目】已知函數(shù)f(x)= 的圖象上有且僅有四個不同的點關(guān)于直線y=﹣1的對稱點在y=kx﹣1的圖象上,則實數(shù)k的取值范圍是(
A.
B.
C.
D.

【答案】A
【解析】解:∵函數(shù)f(x)= 的圖象上有且僅有四個不同的點關(guān)于直線y=﹣1的對稱點在y=kx﹣1的圖象上,

而函數(shù)y=kx﹣1關(guān)于直線y=﹣1的對稱圖象為y=﹣kx﹣1,

∴f(x)= 的圖象與y=﹣kx﹣1的圖象有且只有四個不同的交點,

作函數(shù)f(x)= 的圖象與y=﹣kx﹣1的圖象如下,

易知直線y=﹣kx﹣1恒過點A(0,﹣1),

設(shè)直線AC與y=xlnx﹣2x相切于點C(x,xlnx﹣2x),

y′=lnx﹣1,

故lnx﹣1= ,

解得,x=1;

故kAC=﹣1;

設(shè)直線AB與y=x2+ x相切于點B(x,x2+ x),

y′=2x+ ,

故2x+ =

解得,x=﹣1;

故kAB=﹣2+ =﹣

故﹣1<﹣k<﹣ ,

<k<1;

故選:A.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=(x﹣2)lnx﹣ax+1.
(1)若f(x)在區(qū)間(1,+∞)上單調(diào)遞增,求實數(shù)a的取值范圍;
(2)若存在唯一整數(shù)x0 , 使得f(x0)<0成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在三角形ABC中,角A、B、C的對邊分別為a,b,c,a=4bcosC,
(1)求角B 的值;
(2)若 ,求三角形ABC 的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)=25x , g(x)=x+t,設(shè)h(x)=max{f(x),g(x)}.若當(dāng)x∈N+時,恒有h(5)≤h(x),則實數(shù)t的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的不等式|x+a|<b的解集為{x|2<x<4}.
(1)求實數(shù)a,b的值;
(2)求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓E: + =1(a>b>0)上點P,其左、右焦點分別為F1 , F2 , △PF1F2的面積的最大值為 ,且滿足 =3
(1)求橢圓E的方程;
(2)若A,B,C,D是橢圓上互不重合的四個點,AC與BD相交于F1 , 且 =0,求 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù) ,記Ik=|fk(a2)﹣fk(a1)|+|fk(a3)﹣fk(a2)|++|fk(a2016)﹣fk(a2015)|,k=1,2,則(
A.I1<I2
B.I1>I2
C.I1=I2
D.I1 , I2大小關(guān)系不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知甲,乙兩輛車去同一貨場裝貨物,貨場每次只能給一輛車裝貨物,所以若兩輛車同時到達(dá),則需要有一車等待.已知甲、乙兩車裝貨物需要的時間都為30分鐘,倘若甲、乙兩車都在某1小時內(nèi)到達(dá)該貨場,則至少有一輛車需要等待裝貨物的概率是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=axln(x+1)+x+1(x>﹣1,a∈R).
(1)若 ,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)當(dāng)x≥0時,不等式f(x)≤ex恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案