已知點(diǎn)A(-2,0),B(2,0),動(dòng)點(diǎn)P滿足:∠APB=2θ,且|PA||PB|sin2θ=2
(1)證明:動(dòng)點(diǎn)P的軌跡Q是雙曲線;
(2)過點(diǎn)B的直線l與軌跡Q交于兩點(diǎn).試問x軸上是否存在定點(diǎn)C,使為常數(shù),若存在,求出點(diǎn)C的坐標(biāo);若不存在,說明理由.
解: (1)依題意,由余弦定理得:
, ……2分
即即
.
,即. …………4分
(當(dāng)動(dòng)點(diǎn)與兩定點(diǎn)共線時(shí)也符合上述結(jié)論)
動(dòng)點(diǎn)的軌跡為以為焦點(diǎn),實(shí)軸長(zhǎng)為的雙曲線.
所以,軌跡Q的方程為. …………6分
(2)假設(shè)存在定點(diǎn),使為常數(shù).
(1)當(dāng)直線 不與軸垂直時(shí),
設(shè)直線的方程為,代入整理得:
. …………7分
由題意知,.
設(shè),,則,. …………8分
于是, …………9分
. …………11分
要使是與無關(guān)的常數(shù),當(dāng)且僅當(dāng),此時(shí). …12分
(2)當(dāng)直線 與軸垂直時(shí),可得點(diǎn),,
當(dāng)時(shí),. …13分
故在軸上存在定點(diǎn),使為常數(shù). …………14分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
(08年福州質(zhì)檢二)(12分)
已知點(diǎn)A(-2,0),B(2,0),動(dòng)點(diǎn)P滿足:∠APB=2,且|PA||PB|sin2θ=2,
(Ⅰ)求證:動(dòng)點(diǎn)P的軌跡Q是雙曲線;
(Ⅱ)過點(diǎn)B的直線與軌跡Q交于兩點(diǎn)M,N.試問軸上是否存在定點(diǎn)C,使為常數(shù),若存在,求出點(diǎn)C的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(08年平遙中學(xué)) (12分) 已知點(diǎn)A(-2,0),B(2,0),動(dòng)點(diǎn)P滿足:∠APB=2θ,且|PA||PB|sin2θ=2
(1)求動(dòng)點(diǎn)P的軌跡Q的方程;
(2)過點(diǎn)B的直線l與軌跡Q交于兩點(diǎn)M,N。試問x軸上是否存在定點(diǎn)C,使?為常數(shù),若存在,求出點(diǎn)C的坐標(biāo);若不存在,說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(08年平遙中學(xué)) (12分) 已知點(diǎn)A(-2,0),B(2,0),動(dòng)點(diǎn)P滿足:∠APB=2θ,且|PA||PB|sin2θ=2
(1)求動(dòng)點(diǎn)P的軌跡Q的方程;
(2)過點(diǎn)B的直線l與軌跡Q交于兩點(diǎn)M,N。試問x軸上是否存在定點(diǎn)C,使?為常數(shù),若存在,求出點(diǎn)C的坐標(biāo);若不存在,說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(08年平遙中學(xué)) (12分) 已知點(diǎn)A(-2,0),B(2,0),動(dòng)點(diǎn)P滿足:∠APB=2θ,且|PA||PB|sin2θ=2
(1)求動(dòng)點(diǎn)P的軌跡Q的方程;
(2)過點(diǎn)B的直線l與軌跡Q交于兩點(diǎn)M,N。試問x軸上是否存在定點(diǎn)C,使?為常數(shù),若存在,求出點(diǎn)C的坐標(biāo);若不存在,說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知點(diǎn)A(-2,0),B(2,0),動(dòng)點(diǎn)P滿足:,且
(Ⅰ)求動(dòng)點(diǎn)P的軌跡Q的方程;
(Ⅱ)過點(diǎn)B的直線l與軌跡Q交于兩點(diǎn)M,N。試問x軸上是否存在定點(diǎn)C,使 為常數(shù),若存在,求出點(diǎn)C的坐標(biāo);若不存在,說明理由。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com