已知函數(shù)f(x)=1+x-
x2
2
+
x3
3
-
x4
4
+…+
x2011
2011
,設(shè)F(x)=f(x+3),且函數(shù)F(x)的零點(diǎn)均在區(qū)間[a,b](a<b,a,b∈Z)內(nèi),當(dāng)b-a取得最小值時(shí),a+b的值為( 。
A、-1B、-4C、-7D、-3
考點(diǎn):函數(shù)零點(diǎn)的判定定理
專題:函數(shù)的性質(zhì)及應(yīng)用,導(dǎo)數(shù)的概念及應(yīng)用
分析:求導(dǎo)數(shù),確定f(x)是R上的增函數(shù),函數(shù)f(x)在[-1,0]上有一個(gè)零點(diǎn),即可得出結(jié)論.
解答: 解:∵f(x)=1+x-
x2
2
+
x3
3
-
x4
4
+…+
x2011
2011
,
∴f′(x)=1-x+x2-x3+…+x2010
x>-1時(shí),f′(x)>0,f′(-1)=1>0,x<-1時(shí),f′(x)>0,
因此f(x)是R上的增函數(shù),
∵f(0)=1>0,f(-1)=(1-1)+(-
1
2
-
1
3
)+…+(-
1
2010
-
1
2011
)<0
∴函數(shù)f(x)在[-1,0]上有一個(gè)零點(diǎn);
∴函數(shù)f(x+3)在[-4,-3]上有一個(gè)零點(diǎn),
∴a=-4,b=-3
∴a+b=-7.
故選:C
點(diǎn)評(píng):此題是難題.考查函數(shù)零點(diǎn)判定定理和利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性以及數(shù)列求和問題以及函數(shù)圖象的平移,學(xué)生靈活應(yīng)用知識(shí)分析解決問題的能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知奇函數(shù)f(x)的定義域?yàn)镽,當(dāng)x≥0時(shí),f(x)=x2-2x+a,則滿足f(x-x2)>0的實(shí)數(shù)x范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)復(fù)數(shù)z滿足(1-i)z=2i,則z的共軛復(fù)數(shù)
.
z
( 。
A、-1+iB、-1-i
C、1+iD、1-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

3.8756
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合M={x|log2(x-1)<2},N={x|a<x<6},且M∩N=(2,b),則a+b=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)P,S,T為三個(gè)非空集合,已知x∈P是x∈S或x∈T成立的充要條件,則x∈S是x∈P成立的
 
條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=Asin(x+φ)(A>0)滿足f(x1)≤f(x)≤f(x2),則|x1-x2|min=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

關(guān)于函數(shù)f(x)=sinx+mcosx與g(x)=msinx+cosx給出以下結(jié)論:
①函數(shù)f(x)與g(x)有相同的值域.
②函數(shù)f(x)與g(x)的交點(diǎn)隨m的取值的變化而變化.
③函數(shù)f(x)的圖象經(jīng)過平移是不可能得到函數(shù)g(x) 圖象的.
④函數(shù)f(x)與g(x)圖象關(guān)于直線x=
π
4
對稱.
⑤存在 k∈z,使得函數(shù)f(x)與g(x)的初相和為
π
2
+2kπ(k∈Z)
其中正確結(jié)論的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在區(qū)間[1,+∞)上的函數(shù)f(x)滿足:①f(2x)=2f(x);②當(dāng)2≤x≤4時(shí),f(x)=1-|x-3|,則集合S={x|f(x)=f(34)}中的最小元素是( 。
A、2B、4C、6D、8

查看答案和解析>>

同步練習(xí)冊答案