關(guān)于下列命題:①函數(shù)在第一象限是增函數(shù);②函數(shù)是偶函數(shù); ③函數(shù)的一個(gè)對(duì)稱中心是(,0);④函數(shù)在閉區(qū)間上是增函數(shù); 寫出所有正確的命題的題號(hào):            。

試題分析:利用正切函數(shù)單調(diào)性判斷①的正誤;利用余弦函數(shù)的奇偶性判斷②的正誤;把對(duì)稱中心坐標(biāo)代入方程,是否處理確定③的正誤;利用函數(shù)的單調(diào)性判斷④的正誤。
解:①函數(shù)y=tanx在第一象限是增函數(shù);顯然不正確,正切函數(shù)在類似[0, )上是增函數(shù),第一象限是增函數(shù),錯(cuò)誤.②函數(shù)=sin2x是偶函數(shù),是錯(cuò)誤的;③因?yàn)閤=時(shí),函數(shù)y=4sin(2x-)=0,所以函數(shù)y=4sin(2x-)的一個(gè)對(duì)稱中心是(,0);正確.④函數(shù))在閉區(qū)間[-]上是增函數(shù).這是不正確的.在[-,]上函數(shù)有增有減.故答案為:③
點(diǎn)評(píng):本題是基礎(chǔ)題,考查三角函數(shù)的基本性質(zhì),包括:對(duì)稱性、奇偶性、單調(diào)性、對(duì)稱中心的知識(shí),明確基本函數(shù)的基本性質(zhì),是解題的關(guān)鍵,所以平時(shí)學(xué)習(xí)注意基本知識(shí)的掌握和鞏固
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知 ,(,其中)的周期為,且圖像上一個(gè)最低點(diǎn)為
(1)求的解析式;
(2)當(dāng)時(shí),求的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)在一個(gè)周期內(nèi)的圖像下圖所示。

(1)求函數(shù)的解析式;
(2)設(shè),且方程有兩個(gè)不同的實(shí)數(shù)根,求實(shí)數(shù)m的取值范圍和這兩個(gè)根的和。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

將函數(shù)y=cos(x-)的圖像上所有點(diǎn)的橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),再將所得圖像向左平移個(gè)單位,則所得函數(shù)圖像對(duì)應(yīng)的解析式是
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在(0,2π)內(nèi),使sinx>cosx成立的x的取值范圍是( )
A.(,)∪(π,B.(,π)
C.(,D.(,π)∪(

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖所示,是函數(shù)y=Asin(ωx+φ)(A>0,ω>0, -p<φ<0)的簡圖,則振幅、周期、初相分別是               (    )
A.2,,?B.2,,?
C.4,,?D.2,,?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

方程在區(qū)間上解的個(gè)數(shù)為     .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知,b,c為△ABC的三個(gè)內(nèi)角A,B,C的對(duì)邊,向量m =(),
n=(cosA,sinA).若,且,則角       .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知向量
(1)求的增區(qū)間;
(2)已知△ ABC內(nèi)接于半徑為6的圓,內(nèi)角A、B、C的對(duì)邊分別
,若,求邊長

查看答案和解析>>

同步練習(xí)冊答案