【題目】已知函數(shù)有兩個(gè)零點(diǎn).

1)求實(shí)數(shù)的取值范圍;

2)設(shè)、的兩個(gè)零點(diǎn),證明:.

【答案】1;(2)證明見解析

【解析】

1)求導(dǎo)得到,利用導(dǎo)數(shù)得到的最小值,從而要使有兩個(gè)零點(diǎn),則最小值小于,得到的范圍,再利用零點(diǎn)存在定理證明所求的的范圍符合題意;(2)利用分析法,要證,將問題轉(zhuǎn)化為證明,設(shè)函數(shù),利用導(dǎo)數(shù)研究的單調(diào)性,從而進(jìn)行證明.

函數(shù),

所以,

當(dāng)時(shí),上恒成立,所以上單調(diào)遞增,

至多只有一個(gè)零點(diǎn),不符合題意,

當(dāng)時(shí),由

所以時(shí),單調(diào)遞減,

時(shí),,單調(diào)遞增,

所以時(shí)取得極小值,也是最小值,

要有兩個(gè)零點(diǎn),則,

,解得,

所以

當(dāng)時(shí),得,

當(dāng)時(shí),,

設(shè),則

所以單調(diào)遞增,則

所以,

所以在區(qū)間上有且只有一個(gè)零點(diǎn),在上有且只有一個(gè)零點(diǎn),

所以滿足有兩個(gè)零點(diǎn)的的取值范圍為.

2、的兩個(gè)零點(diǎn),則

要證,即證

根據(jù),

可知,

即證

即證,即證

即證,

設(shè),

由(1)知上單調(diào)遞增,

故只需證明,

,所以只需證

,且

所以,

所以上單調(diào)遞減,

所以,

所以上恒成立,

所以,

故原命題得證.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)P在直線l:y=x-1,若存在過點(diǎn)P的直線交拋物線A,B兩點(diǎn),|PA|=|AB|,則稱點(diǎn)P為“正點(diǎn)”,那么下列結(jié)論中正確的是( )

A.直線l上的所有點(diǎn)都是“正點(diǎn)”

B.直線l上僅有有限個(gè)點(diǎn)是“正點(diǎn)”

C.直線l上的所有點(diǎn)都不是“正點(diǎn)”

D.直線l上有無窮多個(gè)點(diǎn)(但不是所有的點(diǎn))是“正點(diǎn)”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】通過隨機(jī)詢問某地100名高中學(xué)生在選擇座位時(shí)是否挑同桌,得到如下列聯(lián)表:

男生

女生

合計(jì)

挑同桌

30

40

70

不挑同桌

20

10

30

總計(jì)

50

50

100

1)從這50名男生中按是否挑同桌采取分層抽樣的方法抽取一個(gè)容量為5的樣本,現(xiàn)從這5名學(xué)生中隨機(jī)選取3名做深度采訪,求這3名學(xué)生中恰有2名挑同桌的概率;

2)根據(jù)以上列聯(lián)表,是否有以上的把握認(rèn)為性別與在選擇座位時(shí)是否挑同桌有關(guān)?

下面的臨界值表供參考:

0.050

0.010

0.001

3.841

6.635

10.828

(參考公式:,其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2019年是中國成立70周年,也是全面建成小康社會(huì)的關(guān)鍵之年.為了迎祖國70周年生日,全民齊心奮力建設(shè)小康社會(huì),某校特舉辦喜迎國慶,共建小康知識(shí)競賽活動(dòng).下面的莖葉圖是參賽兩組選手答題得分情況,則下列說法正確的是(

A.甲組選手得分的平均數(shù)小于乙組選手的平均數(shù)B.甲組選手得分的中位數(shù)大于乙組選手的中位數(shù)

C.甲組選手得分的中位數(shù)等于乙組選手的中位數(shù)D.甲組選手得分的方差大于乙組選手的的方差

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐的底面是菱形,平面底面,,分別是,的中點(diǎn),,,.

1)求證:;

2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中

1)試討論函數(shù)的單調(diào)性;

2)若,試證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著網(wǎng)絡(luò)的發(fā)展,網(wǎng)上購物越來越受到人們的喜愛,各大購物網(wǎng)站為增加收入,促銷策略越來越多樣化,促銷費(fèi)用也不斷增加.下表是某購物網(wǎng)站20181月~8月促銷費(fèi)用(萬元)和產(chǎn)品銷量(萬件)的具體數(shù)據(jù).

月份

1

2

3

4

5

6

7

8

促銷費(fèi)用

2

3

6

10

13

21

15

18

產(chǎn)品銷量

1

1

2

3

3.5

5

4

4.5

1)根據(jù)數(shù)據(jù)可知具有線性相關(guān)關(guān)系,請建立的回歸方程(系數(shù)精確到0.01);

2)已知6月份該購物網(wǎng)站為慶祝成立1周年,特制定獎(jiǎng)勵(lì)制度:以(單位:件)表示日銷量,,則每位員工每日獎(jiǎng)勵(lì)100元;,則每位員工每日獎(jiǎng)勵(lì)150元,,則每位員工每日獎(jiǎng)勵(lì)200.現(xiàn)已知該網(wǎng)站6月份日銷量服從正態(tài)分布,請你計(jì)算某位員工當(dāng)月獎(jiǎng)勵(lì)金額總數(shù)大約多少元(當(dāng)月獎(jiǎng)勵(lì)金額總數(shù)精確到百分位).

參考數(shù)據(jù):,,其中,分別為第個(gè)月的促銷費(fèi)用和產(chǎn)品銷量,.

參考公式:①對于一組數(shù)據(jù),,,其回歸方程的斜率和截距的最小二乘估計(jì)分別為,;②若隨機(jī)變量服從正態(tài)分布,則,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的焦距為2,過點(diǎn).

1)求橢圓的標(biāo)準(zhǔn)方程;

2)設(shè)橢圓的右焦點(diǎn)為F,定點(diǎn),過點(diǎn)F且斜率不為零的直線l與橢圓交于A,B兩點(diǎn),以線段AP為直徑的圓與直線的另一個(gè)交點(diǎn)為Q,證明:直線BQ恒過一定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列是公差不為零等差數(shù)列,滿足;數(shù)列的前項(xiàng)和為,且滿足.

1)求數(shù)列、的通項(xiàng)公式;

2)在之間插入1個(gè)數(shù),使成等差數(shù)列;在之間插入2個(gè)數(shù),使成等差數(shù)列;……;在之間插入個(gè)數(shù),使成等差數(shù)列,

i)求

ii)是否存在正整數(shù),使成立?若存在,求出所有的正整數(shù)對;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案