【題目】已知函數(shù)(a,bR).
(1)當(dāng)a=b=1時(shí),求的單調(diào)增區(qū)間;
(2)當(dāng)a≠0時(shí),若函數(shù)恰有兩個(gè)不同的零點(diǎn),求的值;
(3)當(dāng)a=0時(shí),若的解集為(m,n),且(m,n)中有且僅有一個(gè)整數(shù),求實(shí)數(shù)b的取值范圍.
【答案】(1)f(x)的單調(diào)增區(qū)間是和
(2)
(3)
【解析】
(1)當(dāng)a=b=1時(shí),求得函數(shù)的導(dǎo)數(shù),即可求解函數(shù)的單調(diào)區(qū)間;
(2)法一:求得,令,得或,由函數(shù)f(x)有兩個(gè)不同的零點(diǎn),求得的方程,即可求解;
法二:由得,,設(shè),利用導(dǎo)數(shù)求得函數(shù)的單調(diào)區(qū)間和極值,進(jìn)而可得函數(shù)的零點(diǎn)。
(3)當(dāng)時(shí),可得,設(shè),利用導(dǎo)數(shù)得到函數(shù)的單調(diào)區(qū)間和極值,轉(zhuǎn)化為要使有解,和的解集(m,n)中只有一個(gè)整數(shù),分別列出不等式組,即可求解。
(1)當(dāng)a=b=1時(shí),,
令,解得或
所以f(x)的單調(diào)增區(qū)間是和
(2)法一:,令,得或,
因?yàn)楹瘮?shù)f(x)有兩個(gè)不同的零點(diǎn),所以或,
當(dāng)時(shí),得a=0,不合題意,舍去:
當(dāng)時(shí),代入得
即,所以.
法二:由于,所以,
由得,,
設(shè),令,得,
當(dāng)時(shí),,h(x)遞減:當(dāng)時(shí),,遞增
當(dāng)時(shí),,單調(diào)遞增
當(dāng)時(shí), 的值域?yàn)镽
故不論取何值,方程有且僅有一個(gè)根;
當(dāng)時(shí),,
所以時(shí),方程恰有一個(gè)根-2,
此時(shí)函數(shù)恰有兩個(gè)零點(diǎn)-2和1.
(3)當(dāng)時(shí),因?yàn)?/span>,所以
設(shè),則,
當(dāng)時(shí),因?yàn)?/span>,所以在上遞增,且,
所以在上,,不合題意:
當(dāng)時(shí),令,得,
所以在遞增,在遞減,
所以,
要使有解,首先要滿足,解得. ①
<>又因?yàn)?/span>,,要使的解集(m,n)中只有一個(gè)整數(shù),則
即解得. ②
設(shè),則,
當(dāng)時(shí),,遞增:當(dāng)時(shí),,遞減
所以,所以,
所以由①和②得,.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為保障食品安全,某地食品藥監(jiān)管部門(mén)對(duì)轄區(qū)內(nèi)甲、乙兩家食品企業(yè)進(jìn)行檢查,分別從這兩家企業(yè)生產(chǎn)的某種同類(lèi)產(chǎn)品中隨機(jī)抽取了100件作為樣本,并以樣本的一項(xiàng)關(guān)鍵質(zhì)量指標(biāo)值為檢測(cè)依據(jù).已知該質(zhì)量指標(biāo)值對(duì)應(yīng)的產(chǎn)品等級(jí)如下:
質(zhì)量指標(biāo)值 | [15,20) | [20,25) | [25,30) | [30,35) | [35,40) | [40,45] |
等級(jí) | 次品 | 二等品 | 一等品 | 二等品 | 三等品 | 次品 |
根據(jù)質(zhì)量指標(biāo)值的分組,統(tǒng)計(jì)得到了甲企業(yè)的樣本頻率分布直方圖和乙企業(yè)的樣本頻數(shù)分布表(如下面表,其中a>0).
質(zhì)量指標(biāo)值 | 頻數(shù) |
[15,20) | 2 |
[20,25) | 18 |
[25,30) | 48 |
[30,35) | 14 |
[35,40) | 16 |
[40,45] | 2 |
合計(jì) | 100 |
(Ⅰ)現(xiàn)從甲企業(yè)生產(chǎn)的產(chǎn)品中任取一件,試估計(jì)該件產(chǎn)品為次品的概率;
(Ⅱ)為守法經(jīng)營(yíng)、提高利潤(rùn),乙企業(yè)開(kāi)展次品生產(chǎn)原因調(diào)查活動(dòng).已知乙企業(yè)從樣本里的次品中隨機(jī)抽取了兩件進(jìn)行分析,求這兩件次品中恰有一件指標(biāo)值屬于[40,45]的產(chǎn)品的概率;
(Ⅲ)根據(jù)圖表數(shù)據(jù),請(qǐng)自定標(biāo)準(zhǔn),對(duì)甲、乙兩企業(yè)食品質(zhì)量的優(yōu)劣情況進(jìn)行比較.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),其中.
(1)函數(shù)在處的切線與直線垂直,求實(shí)數(shù)a的值;
(2)若函數(shù)在定義域上有兩個(gè)極值點(diǎn),,且.
①求實(shí)數(shù)a的取值范圍;
②求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿分12分)如圖,在三棱柱ABC-A1B1C1中,側(cè)棱垂直于底面,AB⊥BC,E、F分別為A1C1和BC的中點(diǎn).
(1)求證:平面ABE⊥平面B1BCC1;
(2)求證:C1F//平面ABE.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(2017高考新課標(biāo)Ⅲ,理19)如圖,四面體ABCD中,△ABC是正三角形,△ACD是直角三角形,∠ABD=∠CBD,AB=BD.
(1)證明:平面ACD⊥平面ABC;
(2)過(guò)AC的平面交BD于點(diǎn)E,若平面AEC把四面體ABCD分成體積相等的兩部分,求二面角D–AE–C的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,底面為正方形,平面,為的中點(diǎn),交于點(diǎn),為的重心.
(1)求證:平面;
(2)若,點(diǎn)在線段上,且,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】“工資條里顯紅利,個(gè)稅新政人民心”,隨著2019年新年鐘聲的敲響,我國(guó)自1980年以來(lái),力度最大的一次個(gè)人所得稅(簡(jiǎn)稱個(gè)稅)改革迎來(lái)了全面實(shí)施的階段,某從業(yè)者為了解自己在個(gè)稅新政下能享受多少稅收紅利,繪制了他在26歲~35歲(2009年~2018年)之間各月的月平均收入(單位:千元)的散點(diǎn)圖:
(1)由散點(diǎn)圖知,可用回歸模型擬合與的關(guān)系,試根據(jù)有關(guān)數(shù)據(jù)建立關(guān)于的回歸方程;
(2)如果該從業(yè)者在個(gè)稅新政下的專(zhuān)項(xiàng)附加扣除為3000元/月,試?yán)茫?)的結(jié)果,將月平均收入為月收入,根據(jù)新舊個(gè)稅政策,估計(jì)他36歲時(shí)每個(gè)月少繳交的個(gè)人所得稅.
附注:
參考數(shù)據(jù),,,,,,,其中;取,
參考公式:回歸方程中斜率和截距的最小二乘估計(jì)分別為,
新舊個(gè)稅政策下每月應(yīng)納稅所得額(含稅)計(jì)算方法及稅率表如下:
舊個(gè)稅稅率表(個(gè)稅起征點(diǎn)3500元) | 新個(gè)稅稅率表(個(gè)稅起征點(diǎn)5000元) | |||
稅繳級(jí)數(shù) | 每月應(yīng)納稅所得額(含稅) =收入-個(gè)稅起征點(diǎn) | 稅率 (%) | 每月應(yīng)納稅所得額(含稅) =收入一個(gè)稅起征點(diǎn)-專(zhuān)項(xiàng)附加扣除 | 稅率 (%) |
1 | 不超過(guò)1500元的部分 | 3 | 不超過(guò)3000元的部分 | 3 |
2 | 超過(guò)1500元至4500元的部分 | 10 | 超過(guò)3000元至12000元的部分 | 10 |
3 | 超過(guò)4500元至9000元的部分 | 20 | 超過(guò)12000元至25000元的部分 | 20 |
4 | 超過(guò)9000元至35000元的部分 | 25 | 超過(guò)25000元至35000元的部分 | 25 |
5 | 超過(guò)35000元155000元的部分 | 30 | 超過(guò)35000元至55000元的部分 | 30 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】從8名運(yùn)動(dòng)員中選4人參加4×100米接力賽,在下列條件下,各有多少種不同的排法?(用數(shù)字結(jié)尾)
(1)甲、乙兩人必須跑中間兩棒;
(2)若甲、乙兩人只有一人被選且不能跑中間兩棒;
(3)若甲、乙兩人都被選且必須跑相鄰兩棒.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com