設(shè)函數(shù),曲線過(guò)點(diǎn)P(1,0),且在P點(diǎn)處的切斜線率為2.
(1)求,的值;
(2)證明:

(1) ;(2)詳見(jiàn)解析.

解析試題分析:(1)由曲線過(guò)點(diǎn)(1,0),將點(diǎn)坐標(biāo)代入解析式中,得關(guān)于的方程,再利用,得關(guān)于的另一個(gè)方程,聯(lián)立求出;(2)證明,可構(gòu)造差函數(shù),證明,此題記,然后利用導(dǎo)數(shù)求的最大值.
試題解析:(1),由已知條件得 即   解得;
(2)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/1f/e/fsaac2.png" style="vertical-align:middle;" />,由(I)知,設(shè)=
,則,當(dāng)時(shí),;當(dāng)時(shí),,所以上單調(diào)增加,在(1,+)上單調(diào)減少,∴,故當(dāng)時(shí),,即
考點(diǎn):1、導(dǎo)數(shù)的幾何意義;2、利用導(dǎo)數(shù)求函數(shù)的最值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某出版社新出版一本高考復(fù)習(xí)用書(shū),該書(shū)的成本為5元/本,經(jīng)銷(xiāo)過(guò)程中每本書(shū)需付給代理商m元(1≤m≤3)的勞務(wù)費(fèi),經(jīng)出版社研究決定,新書(shū)投放市場(chǎng)后定價(jià)為元/本(9≤≤11),預(yù)計(jì)一年的銷(xiāo)售量為萬(wàn)本.
(1)求該出版社一年的利潤(rùn)(萬(wàn)元)與每本書(shū)的定價(jià)的函數(shù)關(guān)系式;
(2)當(dāng)每本書(shū)的定價(jià)為多少元時(shí),該出版社一年的利潤(rùn)最大,并求出的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè),函數(shù).
(1)若,求曲線在點(diǎn)處的切線方程;
(2)若無(wú)零點(diǎn),求實(shí)數(shù)的取值范圍;
(3)若有兩個(gè)相異零點(diǎn)、,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè),函數(shù).
(1)若,求函數(shù)的極值與單調(diào)區(qū)間;
(2)若函數(shù)的圖象在處的切線與直線平行,求的值;
(3)若函數(shù)的圖象與直線有三個(gè)公共點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)若函數(shù)在x = 0處取得極值.
(1) 求實(shí)數(shù)的值;
(2) 若關(guān)于x的方程在區(qū)間[0,2]上恰有兩個(gè)不同的實(shí)數(shù)根,求實(shí)數(shù)的取值范圍;
(3)證明:對(duì)任意的正整數(shù)n,不等式都成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù).
(Ⅰ)若函數(shù)上是增函數(shù),求正實(shí)數(shù)的取值范圍;
(Ⅱ)若,,設(shè),求函數(shù)上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù).
(1)若函數(shù)為奇函數(shù),求a的值;
(2)若函數(shù)處取得極大值,求實(shí)數(shù)a的值;
(3)若,求在區(qū)間上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)函數(shù),,函數(shù)的圖象與軸的交點(diǎn)也在函數(shù)的圖象上,且在此點(diǎn)有公切線.
(Ⅰ)求,的值;
(Ⅱ)試比較的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)函數(shù)
(1)求的單調(diào)區(qū)間、最大值;
(2)討論關(guān)于的方程的根的個(gè)數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案