【題目】已知函數(shù),(),求
(1);
(2)令,求關于的函數(shù)關系式,及的取值范圍.
(3)求函數(shù),()的最大值和最小值;并寫出它的值域.
【答案】(1)0;(2)y=t2﹣3t+2(1≤t≤4);(3)
【解析】
(1)將代入可得答案;
(2)若t=log2x,(2≤x≤16),則1≤t≤4,代入y(log2x﹣2)(log2x﹣1)可得y關于t的函數(shù)關系式.
(3)分析y=t2﹣3t+2的圖象形狀,結合1≤t≤4,由二次函數(shù)的圖象和性質,可求出函數(shù)的最值,進而得到函數(shù)的值域.
(1)
(2)若t=log2x,(2≤x≤16)
則1≤t≤4,
則y
=(log2x﹣2)(log2x﹣1)
=(t﹣2)(t﹣1)
=t2﹣3t+2(1≤t≤4)
(3)∵y=t2﹣3t+2的圖象是開口朝上,且以t為對稱軸的二次函數(shù)
又∵1≤t≤4
∴當時,
當t=4時,ymax=6
故函數(shù)的值域是
科目:高中數(shù)學 來源: 題型:
【題目】為了解華師一附中學生喜歡吃辣是否與性別有關,調研部(共10人)分三組對高中三個年級的學生進行調查,每個年級至少派3個人進行調查.(1)求調研部的甲、乙兩人都被派到高一年級進行調查的概率.(2)調研部對三個年級共100人進行了調查,得到如下的列聯(lián)表,請將列聯(lián)表補充完整,并判斷是否有以上的把握認為喜歡吃辣與性別有關?
喜歡吃辣 | 不喜歡吃辣 | 合計 | |
男生 | 10 | ||
女生 | 20 | 30 | |
合計 | 100 |
參考數(shù)據(jù):
參考公式:,其中.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,曲線過點,其參數(shù)方程為(為參數(shù),),以為極點,軸非負半軸為極軸,建立極坐標系,曲線的極坐標方程為.
(1)求曲線的普通方程和曲線的直角坐標方程;
(2)求已知曲線和曲線交于兩點,且,求實數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)對任意實數(shù)x、y恒有,當x>0時,f(x)<0,且.
(1)判斷的奇偶性;
(2)求在區(qū)間[-3,3]上的最大值;
(3)若對所有的恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】《九章算術》是我國古代內容極為豐富的數(shù)學名著,書中有如下問題:“今有芻甍,下廣三丈,袤四丈,上袤二丈,無廣,高二丈,問:積幾何?”其意思為:“今有底面為矩形的屋脊狀的楔體,下底面寬3丈,長4丈,上棱長2丈,高2丈,問:它的體積是多少?”已知l丈為10尺,該楔體的三視圖如圖所示,其中網(wǎng)格紙上小正方形邊長為1,則該楔體的體積為( )
A. 10000立方尺 B. 11000立方尺
C. 12000立方尺 D. 13000立方尺
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若質地均勻的六面體玩具各面分別標有數(shù)字1,2,3,4,5,6.拋擲該玩具后,任何一個數(shù)字所在的面朝上的概率均相等.拋擲該玩具一次,記事件A=“向上的面標記的數(shù)字是完全平方數(shù)(即能寫出整數(shù)的平方形式的數(shù),如9=32,9是完全平方數(shù))”
(1)甲、乙二人利用該玩具進行游戲,并規(guī)定:①甲拋擲一次,若事件A發(fā)生,則向上一面的點數(shù)的6倍為甲的得分;若事件A不發(fā)生,則甲得0分;②乙拋擲一次,將向上的一面對應的數(shù)字作為乙的得分,F(xiàn)甲、乙二人各拋擲該玩具一次,分別求二人得分的期望;
(2)拋擲該玩具一次,記事件B=“向上一面的點數(shù)不超過”,若事件A與B相互獨立,試求出所有的整數(shù)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com