【題目】如圖,四棱柱ABCD﹣A1B1C1D1中,A1A⊥底面ABCD,四邊形ABCD為梯形,AD∥BC,且AD=2BC,過A1、C、D三點的平面記為α,BB1與α的交點為Q.
(1)證明:Q為BB1的中點;
(2)若AA1=4,CD=2,梯形ABCD的面積為6,∠ADC=60°,求平面α與底面ABCD所成銳二面角的大。
【答案】
(1)證明:Ⅰ∵BQ∥AA1,BC∥AD,
BC∩BQ=B,AD∩AA1=A,
∴平面QBC∥平面A1AD,
∴平面A1CD與這兩個平面的交線相互平行,
即QC∥A1D.
∴△QBC與△A1AD的對應邊相互平行,
∴△QBC∽△A1AD,
∴ ,
∴Q為BB1的中點.
(2)解法一:如圖1所示,在△ADC中,作AE⊥DC,垂足為E,連接A1E.
又DE⊥AA1,且AA1∩AE=A,
所以DE⊥平面AEA1,所以DE⊥A1E.
所以∠AEA1為平面α與底面ABCD所成二面角的平面角.
因為BC∥AD,AD=2BC,所以S△ADC=2S△BCA.
又因為梯形ABCD的面積為6,DC=2,
所以S△ADC=4,AE=4.
于是tan∠AEA1= =1,∠AEA1= .
故平面α與底面ABCD所成二面角的大小為 .
解法二:如圖2所示,
以D為原點,DA,DD1分別為x軸和z軸正方向建立空間直角坐標系.
設∠CDA=θ,BC=a,則AD=2a.
因為S四邊形ABCD= 2sin60°=6,
所以a= .
從而可得C(1, ,0),A1( ,0,4),
所以DC=(1, ,0), =( ,0,4).
設平面A1DC的法向量 =(x,y,1),
由 ,
得 ,
所以 =(﹣ , ,1).
又因為平面ABCD的法向量 =(0,0,1),
所以cos< , >= = ,
故平面α與底面ABCD所成二面角的大小為 .
【解析】(1)由已知得平面QBC∥平面A1AD,從而QC∥A1D,由此能證明Q為BB1的中點.(2)法一:在△ADC中,作AE⊥DC,垂足為E,連接A1E,∠AEA1為平面α與底面ABCD所成二面角的平面角,由此求出平面α與底面ABCD所成二面角的大。3)法二:以D為原點,DA,DD1分別為x軸和z軸正方向建立空間直角坐標系,由此利用向量法能求出平面α與底面ABCD所成二面角的大。
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,在正方體ABCD﹣A1B1C1D1中,E是棱DD1的中點.
(1)求直線BE與平面ABB1A1所成的角的正弦值;
(2)在棱C1D1上是否存在一點F,使B1F∥平面A1BE?證明你的結論.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓G:=1(a>b>0)的離心率為,經(jīng)過左焦點F1(-1,0)的直線l與橢圓G相交于A,B兩點,與y軸相交于點C,且點C在線段AB上.
(1)求橢圓G的方程;
(2)若|AF1|=|CB|,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=ex+be﹣x , (b∈R),函數(shù)g(x)=2asinx,(a∈R).
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若b=﹣1,f(x)>g(x),x∈(0,π),求a取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了解某社區(qū)居民有無收看“奧運會開幕式”,某記者分別從某社區(qū)60~70歲,40~50歲,20~30歲的三個年齡段中的160人,240人,x人中,采用分層抽樣的方法共抽查了30人進行調(diào)查,若在60~70歲這個年齡段中抽查了8人,那么x為( ) .
A. 90 B. 120 C. 180 D. 200
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在極坐標系中,已知圓C的圓心C( , ),半徑r= .
(1)求圓C的極坐標方程;
(2)若α∈[0, ),直線l的參數(shù)方程為 (t為參數(shù)),直線l交圓C于A、B兩點,求弦長|AB|的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在科普知識競賽前的培訓活動中,將甲、乙兩名學生的6次培訓成績(百分制)制成如圖所示的莖葉圖:
(1)若從甲、乙兩名學生中選擇1人參加該知識競賽,你會選哪位?請運用統(tǒng)計學的知識說明理由;
(2)若從學生甲的6次培訓成績中隨機選擇2個,記選到的分數(shù)超過87分的個數(shù)為ξ,求ξ的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知p:x2-6x+5≤0,q:x2-2x+1-m2≤0(m>0).
(1)若m=2,且p∧q為真,求實數(shù)x的取值范圍;
(2)若p是q的充分不必要條件,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,雙曲線 =1(a>0,b>0)的右支與焦點為F的拋物線x2=2py(p>0)交于A,B兩點,若|AF|+|BF|=4|OF|,則該雙曲線的漸近線方程為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com