已知集合A={x|x<-2或x≥6},B={x|-3≤x≤5}
(Ⅰ)求∁RA;A∪B;
(Ⅱ)若C={x|x>a},且B∩C=B,求a的取值范圍.
考點(diǎn):交、并、補(bǔ)集的混合運(yùn)算
專題:集合
分析:(Ⅰ)由補(bǔ)集的運(yùn)算求出∁RA,由并集的運(yùn)算求出A∪B;
(Ⅱ)由B∩C=B得B⊆C,再由子集的定義求出a的取值范圍.
解答: 解:(Ⅰ)由集合A={x|x<-2或x≥6}得,CRA={x|-2≤x<6}
又B={x|-3≤x≤5},所以A∪B={x|x≤5或x≥6};     
(Ⅱ)由B∩C=B得,B⊆C,
又C={x|x>a},所以a<-3,
則a的取值范圍是:a<-3.
點(diǎn)評(píng):本題考查了交、并、補(bǔ)集的混合運(yùn)算,以及集合之間的關(guān)系,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知隨機(jī)變量X+Y=8,如果X~N(10,0.6),則E(Y)、D(Y)分別是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在正方體ABCD-A1B1C1D1中,O是底面ABCD的中心,M,N分別是棱DD1,D1C1的中點(diǎn),則異面直線MN與AC所成角的度數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

雙曲線4x2-9y2=36上一點(diǎn)P,與兩焦點(diǎn)F1F2構(gòu)成△PF1F2,則△PF1F2的內(nèi)切圓與邊F1F2的切點(diǎn)N的坐標(biāo)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)27 
2
3
+16- 
1
2
-(
1
2
-2-(
8
27
- 
2
3

(2)|-0.01|-
1
2
-log 
1
2
8+3log32+(lg2)2+lg2•lg5+lg5=
(3)(-0.8)0+(1.5)-2×(3
3
8
 
2
3
-0.01- 
1
2
+9 
1
2
=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某產(chǎn)品經(jīng)過4次革新后,成本由原來的120元下降到70元.若每次革新后,成本下降的百分率相同,那么每次革新后成本下降的百分率為
 
 (精確到0.1%).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

正方體ABCD-A1B1C1D1中,平面D1B1A和平面C1DB的位置關(guān)系是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某商場預(yù)計(jì)2015年從1月起前x個(gè)月顧客對某種商品的需求總量p(x)=
1
2
x(x+1)(41-2x)(x≤12,x∈Z+)(單位:件)
(1)寫出第x個(gè)月的需求量f(x)的表達(dá)式;
(2)若第x個(gè)月的銷售量g(x)=
f(x)-21x,1≤x<7,x∈Z+
x2
ex
(
1
3
x2-10x+96),7≤x≤12,x∈Z+
(單位:件),每件利潤q(x)=
10ex
x
(單位:元),求該商場銷售該商品,預(yù)計(jì)第幾個(gè)月的月利潤達(dá)到最大值?月利潤的最大值是多少?(參考數(shù)據(jù):e6≈403)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
|lgx|,0<x≤10
-
1
2
x+6,x>10
若三個(gè)正實(shí)數(shù)x1,x2,x3互不相等,且滿足f(x1)=f(x2)=f(x3),則x1x2x3的取值范圍是( 。
A、(20,24)
B、(10,12)
C、(5,6)
D、(1,10)

查看答案和解析>>

同步練習(xí)冊答案