【題目】在平面直角坐標(biāo)系中,拋物線,直線交于,兩點(diǎn),.

(1)求的方程;

(2)斜率為)的直線過(guò)線段的中點(diǎn),與交于兩點(diǎn),直線分別交直線兩點(diǎn),求的最大值.

【答案】(1);(2).

【解析】分析:第一問(wèn)首先將直線方程與拋物線方程聯(lián)立,求得方程的根,之后借助于弦長(zhǎng)公式以及題中所給的條件,建立所滿足的等量關(guān)系式,從而求得拋物線的方程,第二問(wèn)根據(jù)第一問(wèn)的結(jié)果可以求得線段的中點(diǎn)的坐標(biāo),從而應(yīng)用點(diǎn)斜式方程寫(xiě)出直線的方程,然后與拋物線方程聯(lián)立,根據(jù)題意,將轉(zhuǎn)化為關(guān)于的關(guān)系式,結(jié)合題中所給的的范圍,求得結(jié)果.

詳解:(1)由方程組

解得

所以,則

,所以

的方程為

(2)由(1),則線段的中點(diǎn)坐標(biāo)

故直線的方程為

由方程組

設(shè),則,

直線的方程,代入,解得,

所以,同理得

所以

因?yàn)?/span>,所以

當(dāng)時(shí),取得最大值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸且取相同的單位長(zhǎng)度建立極坐標(biāo)系,圓的極坐標(biāo)方程為.

(1)求直線的普通方程與圓的直角坐標(biāo)方程;

(2)設(shè)動(dòng)點(diǎn)在圓上,動(dòng)線段的中點(diǎn)的軌跡為與直線交點(diǎn)為,且直角坐標(biāo)系中,點(diǎn)的橫坐標(biāo)大于點(diǎn)的橫坐標(biāo),求點(diǎn)的直角坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),以軸的非負(fù)半軸為極軸且取相同的單位長(zhǎng)度建立極坐標(biāo)系,曲線的極坐標(biāo)方程為:.

(1)若曲線參數(shù)方程為:為參數(shù)),求曲線的直角坐標(biāo)方程和曲線的普通方程;

(2)若曲線參數(shù)方程為:為參數(shù)),,且曲線與曲線交點(diǎn)分別為,,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別為,焦距為,點(diǎn)為橢圓上一點(diǎn),,的面積為.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)設(shè)點(diǎn)為橢圓的上頂點(diǎn),過(guò)橢圓內(nèi)一點(diǎn)的直線交橢圓于兩點(diǎn),若的面積比為,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)時(shí)取得極值且有兩個(gè)零點(diǎn).

(1)求的值與實(shí)數(shù)的取值范圍;

(2)記函數(shù)兩個(gè)相異零點(diǎn),求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在等腰梯形中,的中點(diǎn),,,,現(xiàn)在沿折起使點(diǎn)到點(diǎn)P處,得到三棱錐,且平面平面.

(1)棱上是否存在一點(diǎn),使得平面?請(qǐng)說(shuō)明你的結(jié)論;

(2)求證:平面;

(3)求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,銳角的頂點(diǎn)為坐標(biāo)原點(diǎn),始邊為軸的正半軸,終邊與單位圓的交點(diǎn)分別為.已知點(diǎn)的橫坐標(biāo)為,點(diǎn)的縱坐標(biāo)為

(1)求的值;

(2)求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直四棱柱ABCDA1B1C1D1的底面是菱形,AA1=4AB=2,∠BAD=60°,E,MN分別是BC,BB1,A1D的中點(diǎn).

1)證明:MN∥平面C1DE;

2)求二面角A-MA1-N的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)的圖象上存在關(guān)于軸對(duì)稱(chēng)的點(diǎn),則的取值范圍是__________.

查看答案和解析>>

同步練習(xí)冊(cè)答案