設y1=40.9,y2=80.5,y3=(
1
2
-1.6,則( 。
A、y3>y1>y2
B、y2>y1>y3
C、y1>y2>y3
D、y1>y3>y2
考點:指數(shù)函數(shù)的圖像與性質(zhì)
專題:函數(shù)的性質(zhì)及應用
分析:先化為同底數(shù)的,再根據(jù)指數(shù)函數(shù)的單調(diào)性即可判斷,
解答: 解:y1=40.9=21.8,y2=80.5=21.5,y3=(
1
2
-1.6=21.6,
∵y=2x為增函數(shù),
∴y1>y3>y2
故選:D.
點評:本題主要考查了函數(shù)的單調(diào)性,關鍵是化為同底數(shù),屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知集合M={x|y=lg(2-x)},N={y|y=
1-x
+
x-1
},則( 。
A、M⊆NB、N⊆M
C、M=ND、N∈M

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某校高三年級在5月份進行一次高考模擬考試,考生的總分成績分布情況如表所示:
 [0,400)[400,480)[480,550)[550,750]
文科考生8014512040
理科考生70255xy
已知該?忌,成績在[400,550)中的人數(shù)為700,且不低于480分的文科、理科考生人數(shù)之比為2:3.
(Ⅰ)求x,y的值;
(Ⅱ)若按文、理科用分層抽樣方法在不低于550分的考生中隨機抽取5名考生進行質(zhì)量分析,并請這5名同學中的3名同學進行方法介紹,求文、理科考生都有的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓O的方程為x2+y2=4.
(1)求過點P(1,2)且與圓O相切的直線l的方程;
(2)直線m過點P(1,2),且與圓O交于A、B兩點,若|AB|=2
3
,求直線m的方程;
(3)圓O上有一動點M(x0,y0),
ON
=(2x0y0)
,若向量
OQ
=2
OM
+
1
2
ON
,求動點Q的軌跡方程,并說明此軌跡是什么曲線.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知x∈[
2
,16],求f(x)=(log2x)2-3log2x+2的最值為
 
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=
x-
1-x
x+|1-x|
的值域為( 。
A、(-∞,1)
B、(-∞,1]
C、(0,1]
D、[0,1]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
3+2x-x2
的定義域為A,集合B={x|(x-m-3)(x-m+3)≤0}.
(1)求A和f(x)的值域C;
(2)若A∩B=[2,3],求實數(shù)m的值;
(3)若C?∁RB,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=
1-3m
x
在區(qū)間(0,+∞)上是增函數(shù),則實數(shù)m的取值范圍是(  )
A、m>
1
3
B、m≥
1
3
C、m<
1
3
D、m≤
1
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在數(shù)列{an}中,a1=
2
3
,且對任意的n∈N*都有an+1=
2an
an+1

(1)求數(shù)列{an}的通項公式;
(2)若對任意的n∈N*都有an+1<pan,求實數(shù)p的取值范圍.

查看答案和解析>>

同步練習冊答案