若要得到函數(shù)y=sin(2x-
π
4
)的圖象,可以把函數(shù)y=sin2x的圖象(  )
分析:函數(shù)y=sin(2x-
π
4
)=sin2(x-
π
8
),再由函數(shù)y=Asin(ωx+∅)的圖象變換規(guī)律得出結(jié)論.
解答:解:由于函數(shù)y=sin(2x-
π
4
)=3sin2(x-
π
8
),故要得到函數(shù)y=sin(2x-
π
4
)的圖象,將函數(shù)y=sin2x的圖象沿x軸向右平移
π
8
個(gè)單位即可,
故選:A.
點(diǎn)評(píng):本題主要考查函數(shù)y=Asin(ωx+∅)的圖象變換規(guī)律的應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列命題:
①若f(x)是定義在[-1,1]上的偶函數(shù),且在[-1,0]上是增函數(shù),θ∈(
π
4
π
2
),則f(sin θ)>f(cos θ);
②若銳角α,β滿足cos α>sin β,則α+β<
π
2
;
③若f(x)=2cos2
x
2
-1,則f(x+π)=f(x)對(duì)x∈R恒成立;
④要得到函數(shù)y=sin(
x
2
-
π
4
)
的圖象,只需將y=sin
x
2
的圖象向右平移
π
4
個(gè)單位,
其中真命題是
 
(把你認(rèn)為所有正確的命題的序號(hào)都填上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

①若f(x)是定義在[-1,1]上的偶函數(shù),且在[-1,0]上是增函數(shù),θ∈(
π
4
,
π
2
),則f(sinθ)>f(cosθ);
②若銳角α、β滿足cosα>sinβ 則α+β<
π
2
;
③在△ABC中,“A>B”是“sinA>sinB”成立的充要條件;
④要得到函數(shù)y=sin(
x
2
-
π
4
)
的圖象,只需將y=sin
x
2
的圖象向右平移
π
4
個(gè)單位.
其中是真命題的有
②③
②③
(填寫正確命題題號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列命題:
①f(x)是定義在[-1,1]上的偶函數(shù),且在[-1,0]上是增函數(shù),若θ∈(
π
4
π
2
)
,則f(sinθ)>f(cosθ);
②函數(shù)y=2cos(
π
3
-2x)
的單調(diào)遞減區(qū)間是[kπ+
π
6
,kπ+
3
](k∈Z)
;
③若f(x)=2cos2
x
2
-1,則f(x+π)=-f(x)對(duì)x∈R恒成立
;
④要得到函數(shù)y=sin(
x
2
-
π
4
)的圖象,只需將y=sin
x
2
的圖象向右平移
π
4
個(gè)單位

其中是真命題的有
②③
②③
(填寫所有真命題的序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

有四個(gè)關(guān)于三角函數(shù)的命題:p1:存在x∈R,使得sin2
x
2
+cos2
x
2
=
1
2
;p2:若一個(gè)三角形兩內(nèi)角α、β滿足sinα•cosβ<0,則此三角形為鈍角三角形;p3:任意的x∈[0,π],都有sinx=
1-cos2x
2
;p4:要得到函數(shù)y=sin(
x
2
-
π
4
)
的圖象,只需將函數(shù)y=sin
x
2
的圖象向右平移
π
4
個(gè)單位.其中假命題的是(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案