數(shù)學(xué)公式”是“一元二次方程x2+x+m=0有實(shí)數(shù)解”的


  1. A.
    充分非必要條件
  2. B.
    充分必要條件
  3. C.
    必要非充分條件
  4. D.
    非充分非必要條件
A
分析:利用充分必要條件的判斷法判斷這兩個(gè)條件的充分性和必要性.關(guān)鍵看二者的相互推出性.
解答:由x2+x+m=0知,?
(或由△≥0得1-4m≥0,∴.)
反之“一元二次方程x2+x+m=0有實(shí)數(shù)解”必有,未必有m,
因此“”是“一元二次方程x2+x+m=0有實(shí)數(shù)解”的充分非必要條件.
故選A.
點(diǎn)評(píng):本題考查充分必要條件的判斷性,考查二次方程有根的條件,注意這些不等式之間的蘊(yùn)含關(guān)系.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知以下四個(gè)命題:
①如果x1,x2是一元二次方程ax2+bx+c=0的兩個(gè)實(shí)根,且x1<x2,那么不等式ax2+bx+c<0的解集為{x|x1<x<x2}.
②若
x-1x-2
≤0
,則(x-1)(x-2)≤0.
③“若M={-1,0,1},則x2-2x+m>0的解集是實(shí)數(shù)集R”的逆否命題.
④若函數(shù)f(x)在(-∞,+∞)上遞增,且a+b≥0,則f(a)+f(b)≥f(-a)+f(-b).
其中為真命題的是
 
(填上你認(rèn)為正確的序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知tanα,tanβ是一元二次方程2mx2+(4m-2)x+2m-3=0的兩個(gè)不等實(shí)根,求函數(shù)f(m)=5m2+3mtan(α+β)+4的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知下列命題:
①已知p、q為兩個(gè)命題,若“p∨q”為假命題,則“?p∧?q”為真命題;
②已知隨機(jī)變量X服從正態(tài)分布N(3,1),且P(2≤x≤4)=0.6826,則P(x>4)=0.1587;
③“m<
1
4
”是“一元二次方程x2+x+m=0有實(shí)根”的必要不充分條件;
④命題“若a>b,則2a>2b-1”的否命題為:若a≤b,則2a≤2b-1.
其中不正確的命題個(gè)數(shù)為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2010•桂林二模)在等比數(shù)列{an} 中,若a1和a2是一元二次方程x2-4x+3=0的兩個(gè)根,則a5等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知α,β∈(0,
π
2
),且tanα,tanβ是一元二次方程x2-3
3
x+4=0的兩個(gè)實(shí)根,則α+β=( 。
A、
3
B、
π
3
C、
4
D、
3

查看答案和解析>>

同步練習(xí)冊(cè)答案