【題目】在如圖所示的幾何體中,四邊形是等腰梯形, , , 平面, , .
(1)求證: ;
(2)求二面角的余弦值.
【答案】(1)證明見解析;(2) .
【解析】試題分析:
(1)由題意結(jié)合角的關(guān)系可得, ,由線面垂直的性質(zhì)可得,故平面, .
(2)結(jié)合(1)的結(jié)論可知兩兩垂直,以為坐標(biāo)原點(diǎn),分別以所在的直線為軸, 軸, 軸建立空間直角坐標(biāo)系,計(jì)算可得平面的一個(gè)法向量為,而是平面的一個(gè)法向量,據(jù)此計(jì)算可得二面角的余弦值為.
試題解析:
(1)證明:因?yàn)樗倪呅?/span>是等腰梯形, , .所以.
又,所以,因此, , ,
平面, ,所以, ,
所以平面;所以.
(2)由(1)知, ,同理,
又平面,因此兩兩垂直,以為坐標(biāo)原點(diǎn),分別以所在的直線為軸, 軸, 軸建立如圖的空間直角坐標(biāo)系,
不妨設(shè),則, , , ,因此, .
設(shè)平面的一個(gè)法向量為,則, ,∴,
所以,取,則,
由于是平面的一個(gè)法向量,
則, ,
所以二面角的余弦值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某大學(xué)志愿者協(xié)會(huì)有6名男同學(xué),4名女同學(xué),在這10名同學(xué)中,3名同學(xué)來自數(shù)學(xué)學(xué)院,其余7名同學(xué)來自物理﹑化學(xué)等其他互不相同的七個(gè)學(xué)院,現(xiàn)從這10名同學(xué)中隨機(jī)選取3名同學(xué),到希望小學(xué)進(jìn)行支教活動(dòng)(每位同學(xué)被選到的可能性相同).
(1)求選出的3名同學(xué)是來自互不相同學(xué)院的概率;
(2)設(shè)為選出的3名同學(xué)中女同學(xué)的人數(shù),求隨機(jī)變量的分布列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)準(zhǔn)備推出一種花卉植物用于美化城市環(huán)境,為評(píng)估花卉的生長水平,現(xiàn)對(duì)該花卉植株的高度(單位:厘米)進(jìn)行抽查,所得數(shù)據(jù)分組為,據(jù)此制作的頻率分布直方圖如圖所示.
(1)求出直方圖中的值;
(2)利用直方圖估算花卉植株高度的中位數(shù);
(3)若樣本容量為32,現(xiàn)準(zhǔn)備從高度在的植株中繼續(xù)抽取2顆做進(jìn)一步調(diào)查,求抽取植株來自同一組的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左焦點(diǎn)為,上頂點(diǎn)為為坐標(biāo)原點(diǎn),橢圓的離心率且的面積為.
(1)求橢圓的方程;
(2)設(shè)線段的中點(diǎn)為,經(jīng)過的直線與橢圓交于兩點(diǎn), ,若點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)在直線上,求直線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的兩個(gè)焦點(diǎn)與短軸的一個(gè)端點(diǎn)是等邊三角形的三個(gè)頂點(diǎn),且長軸長為4.
求橢圓E的方程;
若A是橢圓E的左頂點(diǎn),經(jīng)過左焦點(diǎn)F的直線l與橢圓E交于C,D兩點(diǎn),求與為坐標(biāo)原點(diǎn)的面積之差絕對(duì)值的最大值.
已知橢圓E上點(diǎn)處的切線方程為,T為切點(diǎn)若P是直線上任意一點(diǎn),從P向橢圓E作切線,切點(diǎn)分別為N,M,求證:直線MN恒過定點(diǎn),并求出該定點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的焦點(diǎn)為,點(diǎn)在拋物線上,,直線過點(diǎn),且與拋物線交于,兩點(diǎn).
(1)求拋物線的方程及點(diǎn)的坐標(biāo);
(2)求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義域?yàn)?/span>的函數(shù)是奇函數(shù).
(1)求的值;
(2)判斷函數(shù)的單調(diào)性,并用定義證明;
(3)當(dāng)時(shí),恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com