(16分)已知函數(shù)是自然對(duì)數(shù)的底數(shù)).
(1)若曲線在處的切線也是拋物線的切線,求的值;
(2)若對(duì)于任意恒成立,試確定實(shí)數(shù)的取值范圍;
(3)當(dāng)時(shí),是否存在,使曲線在點(diǎn)處的切線斜率與在上的最小值相等?若存在,求符合條件的的個(gè)數(shù);若不存在,請(qǐng)說(shuō)明理由.
解:(1),所以在處的切線為
即: ………………………………2分
與聯(lián)立,消去得,
由知,或. ………………………………4分
(2)
①當(dāng)時(shí),在上單調(diào)遞增,且當(dāng)時(shí),,
,故不恒成立,所以不合題意 ;………………6分
②當(dāng)時(shí),對(duì)恒成立,所以符合題意;
③當(dāng)時(shí)令,得, 當(dāng)時(shí),,
當(dāng)時(shí),,故在上是單調(diào)遞減,在上是單調(diào)遞增, 所以又,,
綜上:. ………………………………10分
(3)當(dāng)時(shí),由(2)知,
設(shè),則,
假設(shè)存在實(shí)數(shù),使曲線在點(diǎn)處的切線斜率與在上的最小值相等,即為方程的解,………………………………13分
令得:,因?yàn)?sub>, 所以.
令,則 ,
當(dāng)是,當(dāng)時(shí),所以在上單調(diào)遞減,在上單調(diào)遞增,,故方程 有唯一解為1,
所以存在符合條件的,且僅有一個(gè). ………………………………16分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2010-2011年?yáng)|北師大附中高二下學(xué)期期中考試文科數(shù)學(xué) 題型:解答題
(本題10分)
已知函數(shù)(是自然對(duì)數(shù)的底數(shù),).
(I)證明:對(duì),不等式恒成立;
(II)數(shù)列的前項(xiàng)和為,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年甘肅省天水市高三上學(xué)期第一階段性考試?yán)砜茢?shù)學(xué)卷 題型:解答題
(本題滿分12分)
已知函數(shù)(是自然對(duì)數(shù)的底數(shù)).
(1)證明:對(duì)任意的實(shí)數(shù),不等式恒成立;
(2)數(shù)列的前項(xiàng)和為,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年安徽省名校高三第一次聯(lián)考數(shù)學(xué)試?yán)砭?/span> 題型:解答題
(13分)已知函數(shù)是自然對(duì)數(shù)的底)
(1)求的單調(diào)區(qū)間;
(2)當(dāng)時(shí),若方程在區(qū)間上有兩個(gè)不同的實(shí)根,求證:
。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010-2011年?yáng)|北師大附中高二下學(xué)期期中考試文科數(shù)學(xué) 題型:解答題
(本題10分)
已知函數(shù)(是自然對(duì)數(shù)的底數(shù),).
(I)證明:對(duì),不等式恒成立;
(II)數(shù)列的前項(xiàng)和為,求證:.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com