【題目】已知數(shù)列{an}的首項a1= ,an+1= ,n=1,2,3,…. (Ⅰ)證明:數(shù)列{ ﹣1}是等比數(shù)列;
(Ⅱ)求數(shù)列 { }的前n項和Sn .
【答案】(Ⅰ)證明:∵ ,∴ , ∴ ,
又 ,∴ ,
∴數(shù)列 是以為 首項, 為公比的等比數(shù)列.
(Ⅱ)解:由(Ⅰ)知 ﹣1= ,即 ,
∴ .
設(shè) … ,①
則 … ,②
由①﹣②得 … ,
∴ .
又1+2+3+… ,
∴數(shù)列 的前n項和 .
【解析】(Ⅰ)由an+1= ,可得 ,即可證明數(shù)列{ ﹣1}是等比數(shù)列;(Ⅱ)分組,再利用錯位相減法,即可求出數(shù)列{ }的前n項和Sn .
【考點精析】本題主要考查了等比關(guān)系的確定和數(shù)列的前n項和的相關(guān)知識點,需要掌握等比數(shù)列可以通過定義法、中項法、通項公式法、前n項和法進行判斷;數(shù)列{an}的前n項和sn與通項an的關(guān)系才能正確解答此題.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知n為正整數(shù),數(shù)列{an}滿足an>0, ,設(shè)數(shù)列{bn}滿足
(1)求證:數(shù)列 為等比數(shù)列;
(2)若數(shù)列{bn}是等差數(shù)列,求實數(shù)t的值;
(3)若數(shù)列{bn}是等差數(shù)列,前n項和為Sn , 對任意的n∈N* , 均存在m∈N* , 使得8a12Sn﹣a14n2=16bm成立,求滿足條件的所有整數(shù)a1的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正四棱錐S﹣ABCD中,E,M,N分別是BC,CD,SC的中點,動點P在線段MN上運動時,下列四個結(jié)論中恒成立的個數(shù)為( )
(1)EP⊥AC;
(2)EP∥BD;
(3)EP∥面SBD;
(4)EP⊥面SAC.
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C的圓心是直線x﹣y+1=0與x軸的交點,且圓C與(x﹣2)2+(y﹣4)2=9相外切,若過點P(﹣1,1)的直線l與圓C交于A,B兩點,當(dāng)∠ACB最小時,弦AB的長為( )
A.4
B.
C.2
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直三棱柱ABC﹣A1B1C1中,A1B1=A1C1 , D,E分別是棱BC,CC1上的點(點D 不同于點C),且AD⊥DE,F(xiàn)為B1C1的中點.求證:
(1)平面ADE⊥平面BCC1B1;
(2)直線A1F∥平面ADE.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】△ABC中,角A,B,C所對的邊長分別為a,b,c.已知 , .
(Ⅰ)當(dāng)b=2時,求c;
(Ⅱ)求b+c的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=cos2x的圖象向左平移 個單位后得到函數(shù)g(x)的圖象,若使|f(x1)﹣g(x2)|=2成立x1 , x2的滿足 ,則φ的值為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】四棱柱 ABCD﹣A1B1C1D1中,底面為平行四邊形,以頂點 A 為端點的三條棱長都相等,且兩兩夾角為 60°.則線段 AC1與平面ABC所成角的正弦值為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com