已知是公差不為0的等差數(shù)列的前項和,且成等比數(shù)列,則     
A.2B.6C.8D.10
C
,
于是,整理得
,故
因此
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

對于數(shù)列,定義“變換”:將數(shù)列變換成數(shù)列,其中,且.這種“變換”記作.繼續(xù)對數(shù)列進行“變換”,得到數(shù)列,依此類推,當?shù)玫降臄?shù)列各項均為時變換結(jié)束.
(Ⅰ)試問經(jīng)過不斷的“變換”能否結(jié)束?若能,請依次寫出經(jīng)過“變換”得到的各數(shù)列;若不能,說明理由;
(Ⅱ)設(shè),.若,且的各項之和為
(。┣,;
(ⅱ)若數(shù)列再經(jīng)過次“變換”得到的數(shù)列各項之和最小,求的最小值,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

數(shù)列{}是首項為23,公差為整數(shù)的等差數(shù)列,且前6項為正,從第7項開始變?yōu)樨摰?回答下列各問:(1)求此等差數(shù)列的公差d;(2)設(shè)前n項和為,求的最大值;(3)當是正數(shù)時,求n的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)對于數(shù)列,定義為數(shù)列的一階差分數(shù)列,其中,.若,且.(I)求證數(shù)列為等差數(shù)列;(Ⅱ)若),求.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
已知數(shù)列是公差為2的等差數(shù)列,且,,成等比數(shù)列.
(1)求的通項公式;
(2)令 ,記數(shù)列的前項和為,求證:.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

設(shè)數(shù)列滿足的前項和為     

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知三個數(shù)成等差數(shù)列,其和為21,若第二個數(shù)減去1 ,第三個數(shù)加上1,則三個數(shù)成等比數(shù)列. 求原來的三個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
已知數(shù)列{}為公差不為零的等差數(shù)列,=1,各項均為正數(shù)的等比數(shù)列{}的第1
項、第3項、第5項分別是、
(I)求數(shù)列{}與{}的通項公式;
(Ⅱ)求數(shù)列{}的前項和.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題12分)已知數(shù)列中,
(1)求;(2)求此數(shù)列前項和的最大值.

查看答案和解析>>

同步練習冊答案