11.已知集合{a|0≤a<4,a∈N},用列舉法可以表示為{0,1,2,3}.

分析 根據(jù)集合{a|0≤a<4,a∈N},可得集合A是有大于等于0小于4的自然數(shù)組成,據(jù)此用列舉法表示出集合A即可

解答 解:根據(jù){a|0≤a<4,a∈N},
可得集合有小大于等于0小于4的自然數(shù)組成,
所以{0,1,2,3}.
故答案為{0,1,2,3}.

點評 本題主要考查了集合的表示方法的運用,屬于基礎(chǔ)題

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知A={(x,y)|y=x-3},B={(x,y)|y=-x-5},則A∩B為( 。
A.{-1,4}B.{-1,-4}C.{(-1,4)}D.{(-1,-4)}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.命題p:“?x≥0,e${\;}^{{x}_{0}}$<x0+1”,則¬p是( 。
A.?x≥0,ex<x+1B.?x≥0,ex>x+1C.?x≥0,ex≥x+1D.?x≥0,ex≥x+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.設(shè)集合U={1,2,3,4},M={1,2,3},N={x∈N*|(3-x)(x+1)>0},則集合∁U(M∩N) 的子集個數(shù)為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知p:2x2-3x+1≤0,q:x2-(2a+1)x+a2≤0.
(1)若a=2且p∧q為真,求實數(shù)x的取值范圍;
(2)若p是q的充分不必要條件,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知常數(shù)a,b∈R,且不等式x-alnx+a-b<0解集為空集,則ab的最大值為$\frac{1}{2}$e3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=$\sqrt{x+2}$+$\frac{1}{|x|-1}$.
(1)求函數(shù)的定義域;     
(2)求f(0),f[f(2)]的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.在極坐標系中,已知曲線C:ρ=2cosθ,將曲線C上的點向左平移一個單位,然后縱坐標不變,橫坐標伸長到原來的2倍,得到曲線C1,又已知直線l:$\left\{\begin{array}{l}x=tcos\frac{π}{3}\\ y=\sqrt{3}+tsin\frac{π}{3}\end{array}$(t是參數(shù)),且直線l與曲線C1交于A,B兩點.
(1)求曲線C1的直角坐標方程,并說明它是什么曲線;
(2)設(shè)定點P(0,$\sqrt{3}$),求$\frac{1}{|PA|}$+$\frac{1}{|PB|}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知f(x)=$\frac{1}{x+2}$(x≠-2),h(x)=x2+1.
(1)求f(2),h(1)的值;
(2)求f[h(2)]的值;
(3)求f(x),h(x)的值域.

查看答案和解析>>

同步練習冊答案