已知函數(shù)f(x)=3sin(ωx+φ)(ω>0,-
π
2
<φ<0)的最小正周期為π,且其圖象經(jīng)過(guò)點(diǎn)(
3
,0).
(1)求函數(shù)f(x)的解析式;
(2)若函數(shù)g(x)=f(
x
2
+
12
),α,β∈(0,π),且g(α)=1,g(β)=
3
2
4
,求g(α-β)的值.
考點(diǎn):由y=Asin(ωx+φ)的部分圖象確定其解析式,兩角和與差的正弦函數(shù)
專題:三角函數(shù)的求值,三角函數(shù)的圖像與性質(zhì)
分析:(1)利用正弦函數(shù)f(x)=3sin(ωx+φ)的最小正周期為π,可求得ω=2,再由其圖象經(jīng)過(guò)點(diǎn)(
3
,0)可求得φ,從而可求函數(shù)f(x)的解析式;
(2)依題意可求得g(x)=3cosx,由g(β)=3cosβ=
3
2
4
,可求得cosβ=
2
4
,而α,β∈(0,π),可求得sinα=
2
2
3
,sinβ=
14
4
,利用兩角差的余弦即可求得g(α-β)的值.
解答: 解:(1)因?yàn)楹瘮?shù)f(x)的最小正周期為π,且ω>0,所以
ω
=π,解得ω=2.
所以f(x)=3sin(2x+φ).
因?yàn)楹瘮?shù)f(x)的圖象經(jīng)過(guò)點(diǎn)(
π
3
,0)
,所以3sin(2×
3
+φ)
=0,
3
=kπ,k∈Z,即φ=kπ-
3
,k∈Z.
-
π
2
<φ<0
,得φ=-
π
3

所以函數(shù)f(x)的解析式為f(x)=3sin(2x-
π
3
)

(2)依題意有g(shù)(x)=3sin[2×(
x
2
+
12
)-
π
3
]
=3sin(x+
π
2
)
=3cosx.
由g(α)=3cosα=1,得cosα=
1
3
,
由g(β)=3cosβ=
3
2
4
,得cosβ=
2
4

因?yàn)棣粒隆剩?,π),所以sinα=
2
2
3
,sinβ=
14
4

所以g(α-β)=3cos(α-β)=3(cosαcosβ+sinαsinβ)
=3×(
1
3
×
2
4
+
2
2
3
×
14
4
)
=
2
+4
7
4
點(diǎn)評(píng):本題考查由y=Asin(ωx+φ)的部分圖象確定其解析式,突出考查同角三角函數(shù)間的關(guān)系、誘導(dǎo)公式與兩角差的余弦的綜合應(yīng)用,屬于中檔題
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知tanα=-
3
4
,且α為第四象限角,則cosα等于( 。
A、
3
5
B、-
3
5
C、
4
5
D、-
4
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿足a1=10,an=6an+1-
1
2
×4n,n≥2,n∈Z.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)證明:
1
a1
+
1
a2
+
1
a3
+…+
1
an
1
8
;
(3)證明:數(shù)列{an}中任意三項(xiàng)不可能成為等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在等差數(shù)列{an}中,a1=1,a2+a4=6.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)將數(shù)列{an}的前4項(xiàng)抽去其中一項(xiàng)后,剩下的三項(xiàng)構(gòu)成公比大于1的等比數(shù)列{bn}的前三項(xiàng),記數(shù)列{bn}前n項(xiàng)的和為Sn,若對(duì)任意n∈N*,使得Sn≥λ成立,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x-sinx-
1
3
ax3,其中a∈R.
(1)當(dāng)a=1時(shí),求函數(shù)g(x)=f(x)+sinx的極值;
(2)當(dāng)a<0時(shí),證明:函數(shù)f(x)在R是單調(diào)函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某校從6名教師中選派3名教師同時(shí)去3個(gè)邊遠(yuǎn)地區(qū)支教,每地1人,其中甲和乙不同去,甲和丙只能同去或同不去,則不同的選派方案共有
 
種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2sinxcosx+2
3
cos2x-
3
,x∈R.
(Ⅰ)求函數(shù)y=f(-3x)+1的最小正周期和單調(diào)遞減區(qū)間;
(Ⅱ)已知△ABC中的三個(gè)內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,若銳角A滿足f(
A
2
-
π
6
)=
3
,且a=7,sinB+sinC=
13
3
14
,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

歐陽(yáng)修《賣油翁》中寫(xiě)到:(翁)乃取一葫蘆置于地,以錢覆其口,徐以杓酌油瀝之,自錢孔入,而錢不濕.可見(jiàn)“行行出狀元”,賣油翁的技藝讓人嘆為觀止.若銅錢是直徑為4cm的圓,中間有邊長(zhǎng)為1cm的正方形孔,若隨機(jī)向銅錢上滴一滴油(油滴是直徑為0.2cm的球)正好落人孔中的概率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在某班進(jìn)行的演講比賽中,共有5位選手參加,其中3位女生,2位男生.如果2位男生不能連著出場(chǎng),且女生甲不能排在第一個(gè),那么出場(chǎng)順序的排法種數(shù)為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案