若函數(shù)f(x)=
log2x,x>0
log
1
2
(-x),x<0
,若a•f(-a)<0,則實數(shù)a的取值范圍是( 。
A、(-1,0)∪(1,+∞)
B、(-∞,-1)∪(0,1)
C、(-∞,-1)∪(1,+∞)
D、(-1,0)∪(0,1)
考點:分段函數(shù)的應(yīng)用
專題:計算題,作圖題,函數(shù)的性質(zhì)及應(yīng)用
分析:作函數(shù)f(x)=
log2x,x>0
log
1
2
(-x),x<0
的圖象,化簡a•f(-a)<0可化為a•f(a)>0,從而求解.
解答: 解:作函數(shù)f(x)=
log2x,x>0
log
1
2
(-x),x<0
的圖象如下,
故a•f(-a)<0可化為a•f(a)>0,
即a與f(a)同號,故a>1或a<-1,
故選C.
點評:本題考查了分段函數(shù)的應(yīng)用,同時考查了函數(shù)的奇偶性與不等式的解法,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若(
x
+
1
2
4x
n的展開式中前三項系數(shù)成等差數(shù)列.
(1)求展開式中所有的有理項;
(2)求展開式中二項式系數(shù)最大的項及系數(shù)最大的項.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A、B是橢圓
x2
a2
+
y2
b2
=1(a>b>0)長軸的兩個端點,M,N是橢圓上關(guān)于x軸對稱的兩點,直線AM,BN的斜率分別為k1,k2,且k1k2≠0若|k1|+|k2|的最小值為1,則橢圓的離心率
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=|4x-x2|+2a-8至少有3個零點,則實數(shù)a的取值范圍是( 。
A、(-∞,3)
B、(-∞,3]
C、[2,3)
D、[2,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}的前項和為Sn,且a3=5,S15=225.
(1)求數(shù)列{an}的通項an
(2)設(shè)bn=an+1-
n
2n-1
,求數(shù)列{bn}的前項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,已知6
AC
AB
=2
AB
BC
=3
BC
CA
,則∠A=( 。
A、30°B、45°
C、120°D、135°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(logax)=
1
a-1
(x-
1
x
)
(其中a是大于1的常數(shù))
(1)求函數(shù)y=f(x)的解析式
(2)探討函數(shù)y=f(x)的性質(zhì),并利用其性質(zhì)解不等式f(1-m)+f(1-m2)<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等差數(shù)列{an}的前n項和為Sn,且a1>0,S50=0.設(shè)bn=anan+1an+2(n∈N+),則當(dāng)數(shù)列{bn}的前n項和Tn取得最大值時,n的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ln(-x2+2x+8),則函數(shù)f(x)的增區(qū)間為( 。
A、(0,+∞)
B、(-∞,1)
C、(-2,1)
D、(1,4)

查看答案和解析>>

同步練習(xí)冊答案