精英家教網 > 高中數學 > 題目詳情
定義函數fn(x)=(1+x)n-1,x>-2,x∈N*
(1)求證:fn(x)≥nx;
(2)是否存在區(qū)間[a,0](a<0),使函數h(x)=f3(x)-f2(x)在區(qū)間[a,0]上的值域為[ka,0]若存在,求出最小的k值及相應的區(qū)間[a,0],若不存在,說明理由.
分析:(1)令g(x)=fn(x)-nx=(1+x)n-1-nx,求出導函數,利用導數研究函數的增減性得到函數的最小值為g(0)=0,即可得證;
(2)h(x)=f3(x)-f2(x)=x(1+x)2,x∈[a,0](a<0),求導函數,分類討論,確定函數的最值,利用函數h(x)=f3(x)-f2(x)在區(qū)間[a,0]上的值域為[ka,0],即可求得結論.
解答:(1)證明:令g(x)=fn(x)-nx=(1+x)n-1-nx.
則g'(x)=n(x+1)n-1-n=n[(x+1)n-1-1],
∴當-2<x<0時,g'(x)<0;當x>0時g'(x)>0.
∴g(x)在(-2,0)上單調遞減,在(0,+∞)上單調遞增.
∴當x=0時,g(x)min=g(0)=0,即g(x)≥g(x)min=g(0)=0,
∴fn(x)≥nx;
(2)解:h(x)=f3(x)-f2(x)=x(1+x)2,x∈[a,0](a<0),
∴h'(x)=(1+x)2+2x(1+x)=(1+x)(1+3x),
令h'(x)=0,得x=-1或-
1
3

∵h(-1)=h(0)=0,h(-
1
3
)=h(-
4
3
)=-
4
27

∴若-
1
3
<a<0
,則函數在[a,0]上單調增,∴h(a)=ka,h(0)=0,∴a(1+a)2=ka,∴k=(1+a)2∈(
4
9
,1
);
-
4
3
≤a≤-
1
3
,則h(-
1
3
)=ka,h(0)=0,∴k=-
4
27a
[
1
9
,
4
9
]
;
a<-
4
3
,則h(a)=ka,h(0)=0,∴a(1+a)2=ka,∴k=(1+a)2∈(
1
9
,+∞)
綜上知,k∈[
1
9
,+∞)
∴最小的k值為
1
9
,相應的區(qū)間為[-
4
3
,0]
點評:本題考查導數知識的運用,考查函數的單調性與最值,考查分類討論的數學思想,綜合性強.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2012•黃浦區(qū)二模)對n∈N*,定義函數fn(x)=-(x-n)2+n,n-1≤x≤n.
(1)求證:y=fn(x)圖象的右端點與y=fn+1(x)圖象的左端點重合;并回答這些端點在哪條直線上.
(2)若直線y=knx與函數fn(x)=-(x-n)2+n,n-1≤x≤n(n≥2,n∈N*)的圖象有且僅有一個公共點,試將kn表示成n的函數.
(3)對n∈N*,n≥2,在區(qū)間[0,n]上定義函數y=f(x),使得當m-1≤x≤m(n∈N*,且m=1,2,…,n)時,f(x)=fm(x).試研究關于x的方程f(x)=fn(x)(0≤x≤n,n∈N*)的實數解的個數(這里的kn是(2)中的kn),并證明你的結論.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

對n∈N*,定義函數fn(x)=-(x-n)2+n,n-1≤x≤n.
(1)求證:y=fn(x)圖象的右端點與y=fn+1(x)圖象的左端點重合;并回答這些端點在哪條直線上.
(2)若直線y=knx與函數fn(x)=-(x-n)2+n,n-1≤x≤n(n≥2,n∈N*)的圖象有且僅有一個公共點,試將kn表示成n的函數.
(3)對n∈N*,n≥2,在區(qū)間[0,n]上定義函數y=f(x),使得當m-1≤x≤m(n∈N*,且m=1,2,…,n)時,f(x)=fm(x).試研究關于x的方程f(x)=fn(x)(0≤x≤n,n∈N*)的實數解的個數(這里的kn是(2)中的kn),并證明你的結論.

查看答案和解析>>

科目:高中數學 來源:月考題 題型:解答題

定義函數fn(x)=(1+x)n﹣1,x>﹣2,x∈N*.
(1)求證:fn(x)≥nx;
(2)是否存在區(qū)間[a,0](a<0),使函數h(x)=f3(x)﹣f2(x)在區(qū)間[a,0]上的值域為[ka,0],若存在,求出最小的k值及相應的區(qū)間[a,0],若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源:2012-2013學年湖南省常德市芷蘭實驗學校高三(上)第三次月考數學試卷(理科)(解析版) 題型:解答題

定義函數fn(x)=(1+x)n-1,x>-2,x∈N*
(1)求證:fn(x)≥nx;
(2)是否存在區(qū)間[a,0](a<0),使函數h(x)=f3(x)-f2(x)在區(qū)間[a,0]上的值域為[ka,0]若存在,求出最小的k值及相應的區(qū)間[a,0],若不存在,說明理由.

查看答案和解析>>

同步練習冊答案