【題目】在銳角△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c,已知 a=2csinA.
(1)求角C的值;
(2)若c= ,且S△ABC= ,求a+b的值.
【答案】
(1)解:由 a=2csinA及正弦定理,得 sinA=2sinCsinA,
∵sinA≠0,
∴sinC= .
又∵△ABC是銳角三角形,
∴C= .
(2)解:∵c= ,C= ,
∴由面積公式,得 absin = ,即ab=6.①
由余弦定理,得a2+b2﹣2abcos =7,
即a2+b2﹣ab=7.②
由②變形得(a+b)2=3ab+7.③
將①代入③得(a+b)2=25,故a+b=5
【解析】(1)由 a=2csinA及正弦定理得 sinA=2sinCsinA,又sinA≠0,可sinC= .又△ABC是銳角三角形,即可求C.(2)由面積公式,可解得ab=6,由余弦定理,可解得a2+b2﹣ab=7,聯(lián)立方程即可解得a+b的值的值.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線: , : (),從上的點作軸的垂線,交于點,再從點作軸的垂線,交于點.設(shè), , .
(Ⅰ)求數(shù)列的通項公式;
(Ⅱ)記,數(shù)列的前項和為,求證: ;
(Ⅲ)若已知(),記數(shù)列的前項和為,數(shù)列的前項和為,試比較與的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在△ABC中,B= ,AC=2 ,cosC= .
(1)求sin∠BAC的值及BC的長度;
(2)設(shè)BC的中點為D,求中線AD的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)求曲線在點處的切線方程;
(Ⅱ)是否存在正整數(shù),使得在上恒成立?若存在,求出的最大值并給出推導(dǎo)過程,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列{an}滿足a2=0,a6+a8=﹣10.
(1)求數(shù)列{an}的通項公式;
(2)求數(shù)列{ }的前n項和Sn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】解答
(1)解不等式 <0.
(2)若關(guān)于不等式x2﹣4ax+4a2+a≤0的解集為,則實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】用0、1、2、3、4這五個數(shù)字,可以組成多少個滿足下列條件的沒有重復(fù)數(shù)字的五位數(shù)?
(1)奇數(shù);
(2)比21034大的偶數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在銳角△ABC中,a,b,c分別為角A,B,C的對邊,且4sin2 ﹣cos2A= .
(1)求角A的大;
(2)若BC邊上高為1,求△ABC面積的最小值?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com