在平面直角坐標(biāo)系xOy中,若直線y=kx+1與曲線y=|x+
1
x
|-|x-
1
x
|有四個(gè)公共點(diǎn),則實(shí)數(shù)k的取值范圍是
{-
1
8
,0,
1
8
}
{-
1
8
,0,
1
8
}
分析:令t=x-
1
x
=
x2-1
x
=
(x-1)(x+1)
x
,通過分類討論,去掉絕對(duì)值符號(hào),得到分段函數(shù)表達(dá)式,作出其圖象即可得到答案.
解答:解:t=x-
1
x
=
x2-1
x
=
(x-1)(x+1)
x

①若x<-1,t<0,y=|x+
1
x
|-|x-
1
x
|=(-x-
1
x
)-(
1
x
-x)=-
2
x

②若-1<x<0,t>0,y=|x+
1
x
|-|x-
1
x
|=(-x-
1
x
)-(x-
1
x
)=-2x;
③若0<x<1,t<0,則y=|x+
1
x
|-|x-
1
x
|=(x+
1
x
)-(
1
x
-x)=2x;
④若x>1即 t>0,則曲線y=|x+
1
x
|-|x-
1
x
|=(x+
1
x
)-(x-
1
x
)=
2
x

∴y=
-
2
x
(x<-1)
-2x(-1<x<0)
2x(0<x<1)
2
x
(x>1)
,作圖如右:

由于直線y=kx+1經(jīng)過定點(diǎn)A(0,1),當(dāng)過A點(diǎn)的直線m與曲線y=-
2
x
相切時(shí),直線m與曲線y=|x+
1
x
|-|x-
1
x
|有四個(gè)公共點(diǎn),
設(shè)切點(diǎn)坐標(biāo)為:(x0,y0),則k=(-
2
x
)′|x=x0=
2
x02
,
∴y0=-
2
x0
=kx0+1=
2
x02
•x0+1,解得;x0=-4,
∴k=
2
x02
=
1
8
;
同理,可得當(dāng)直線n與曲線y=
2
x
相切時(shí),直線n與曲線y=|x+
1
x
|-|x-
1
x
|有四個(gè)公共點(diǎn),可求得直線n的斜率為k′=-
1
8
;
當(dāng)過A點(diǎn)的直線l∥x軸,即其斜率為0時(shí),直線l與曲線y=|x+
1
x
|-|x-
1
x
|有四個(gè)公共點(diǎn);
綜上所述,實(shí)數(shù)k的取值范圍是{
1
8
,0,-
1
8
}.
故答案為:{
1
8
,0,-
1
8
}.
點(diǎn)評(píng):本題考查帶絕對(duì)值的函數(shù),關(guān)鍵在于去絕對(duì)值符號(hào),難點(diǎn)在于分類討論去絕對(duì)值符號(hào),考查作圖能力,屬于難題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xoy中,已知圓心在直線y=x+4上,半徑為2
2
的圓C經(jīng)過坐標(biāo)原點(diǎn)O,橢圓
x2
a2
+
y2
9
=1(a>0)
與圓C的一個(gè)交點(diǎn)到橢圓兩焦點(diǎn)的距離之和為10.
(1)求圓C的方程;
(2)若F為橢圓的右焦點(diǎn),點(diǎn)P在圓C上,且滿足PF=4,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)系xOy中,銳角α和鈍角β的終邊分別與單位圓交于A,B兩點(diǎn).若點(diǎn)A的橫坐標(biāo)是
3
5
,點(diǎn)B的縱坐標(biāo)是
12
13
,則sin(α+β)的值是
16
65
16
65

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,若焦點(diǎn)在x軸的橢圓
x2
m
+
y2
3
=1
的離心率為
1
2
,則m的值為
4
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•泰州三模)選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系xOy中,已知A(0,1),B(0,-1),C(t,0),D(
3t
,0)
,其中t≠0.設(shè)直線AC與BD的交點(diǎn)為P,求動(dòng)點(diǎn)P的軌跡的參數(shù)方程(以t為參數(shù))及普通方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•東莞一模)在平面直角坐標(biāo)系xOy中,已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的左焦點(diǎn)為F1(-1,0),且橢圓C的離心率e=
1
2

(1)求橢圓C的方程;
(2)設(shè)橢圓C的上下頂點(diǎn)分別為A1,A2,Q是橢圓C上異于A1,A2的任一點(diǎn),直線QA1,QA2分別交x軸于點(diǎn)S,T,證明:|OS|•|OT|為定值,并求出該定值;
(3)在橢圓C上,是否存在點(diǎn)M(m,n),使得直線l:mx+ny=2與圓O:x2+y2=
16
7
相交于不同的兩點(diǎn)A、B,且△OAB的面積最大?若存在,求出點(diǎn)M的坐標(biāo)及對(duì)應(yīng)的△OAB的面積;若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案