分析 (l)求出曲線C1的普通方程和曲線C2的直角坐標(biāo)方程,聯(lián)立方程組能求出曲線C1與C2的交點(diǎn)M的直角坐標(biāo).
(2)曲線C3是以C(0,1)為圓心,半徑r=1的圓,求出圓心C,點(diǎn)B到直線x+y+1=0的距離d,d',由此能求出|AB|的最大值.
解答 解:(1)由曲線${C_1}:\left\{\begin{array}{l}x=cosα\\ y={sin^2}α\end{array}\right.$(α為參數(shù)),
消去參數(shù)α可得:得:y+x2=1,x∈[-1,1],①
曲線${C_2}:ρcos(θ-\frac{π}{4})=-\frac{{\sqrt{2}}}{2}$,可變形為ρcosθ+ρsinθ+1=0,
∴曲線C2:x+y+1=0,②,
聯(lián)立①②可得:消去y可得:x2-x-2=0,解得x=-1或x=2(舍去),
∴M(-1,0).
(2)曲線C3:ρ=2sinθ,即ρ2=2ρsinθ,
∴曲線C3:x2+(y-1)2=1,是以C(0,1)為圓心,半徑r=1的圓,
而曲線${C_2}:ρcos(θ-\frac{π}{4})=-\frac{{\sqrt{2}}}{2}$,即x+y+1=0是一條直線,
設(shè)圓心C到直線x+y+1=0的距離分別為d,
則d=$\frac{|0+1+1|}{\sqrt{2}}$=$\sqrt{2}$,
分析可得|AB|≤d+1=$\sqrt{2}$+1,
則|AB|的最大值為$\sqrt{2}$+1.
點(diǎn)評(píng) 本題考查曲線的交點(diǎn)的直角坐標(biāo)的求法,考查線段的最小值的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意點(diǎn)到直線的距離公式的合理運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{\sqrt{2}}{6}$ | B. | $\frac{\sqrt{3}}{16}$ | C. | 2$\sqrt{3}$ | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $f({\frac{{{x_1}+{x_2}}}{2}})<\frac{{f({x_1})+f({x_2})}}{2}$ | B. | $f({\frac{{{x_1}+{x_2}}}{2}})>\frac{{f({x_1})+f({x_2})}}{2}$ | ||
C. | $f({\frac{{{x_1}+{x_2}}}{2}})=\frac{{f({x_1})+f({x_2})}}{2}$ | D. | 無法確定 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | $\sqrt{2}$ | C. | 2 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{4}$ | B. | $\frac{π}{2}$ | C. | $\frac{3}{4}π$ | D. | $\frac{3}{2}π$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com