1.設(shè)函數(shù)y=f(x)在x=x0處可導(dǎo),且$\underset{lim}{△x→0}$$\frac{f({x}_{0}-3△x)-f({x}_{0})}{2△x}$=1,則f′(x0)等于(  )
A.-$\frac{2}{3}$B.-$\frac{3}{2}$C.1D.-1

分析 變形利用導(dǎo)數(shù)的運(yùn)算定義即可得出.

解答 解:∵$\underset{lim}{△x→0}$$\frac{f({x}_{0}-3△x)-f({x}_{0})}{2△x}$=(-$\frac{3}{2}$)$\underset{lim}{△x→0}$$\frac{f({x}_{0}-3△x)-f({x}_{0})}{-3△x}$=(-$\frac{3}{2}$)f′(x0)=1,
∴f′(x0)=-$\frac{2}{3}$,
故選A.

點(diǎn)評 本題考查了導(dǎo)數(shù)的運(yùn)算定義,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知命題p:關(guān)于x的不等式x2+(a-1)x+1≤0的解集為∅;命題q:方程$\frac{x^2}{2}+\frac{y^2}{a}=1$表示焦點(diǎn)在y軸上的橢圓;若命題?q為真命題,p∨q為真命題.
(1)求實(shí)數(shù)a的取值范圍;
(2)判斷方程(a+1)x2+(1-a)y2=(a+1)(1-a)所表示的曲線的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知$f(x)=\left\{\begin{array}{l}f({x-5}),x≥0\\{log_3}({-x}),x<0\end{array}\right.$,則f(2017)等于1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.自點(diǎn)(-3,3)發(fā)出的光線射到x軸上,被x軸反射,其反射光線L所在直線與圓x2+y2-4x-4y+7=0相切,則反射光線L所在直線方程為4x-3y+3=0或3x-4y-3=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.下列有關(guān)命題的說法正確的是( 。
A.“x2=1”是“x=1”的充分不必要條件
B.“x=2時(shí),x2-3x+2=0”的否命題為真命題
C.命題“?x∈R,使得x2+x+1<0”的否定是:“?x∈R,均有x2+x+1<0”
D.命題“若x=y,則sinx=siny”的逆否命題為真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.雙曲線 $\frac{x^2}{{1+{k^2}}}-\frac{y^2}{{8-{k^2}}}=1$(k為常數(shù))的焦點(diǎn)坐標(biāo)是(  )
A.(0,±3)B.(±3,0)C.(±1,0)D.(0,±1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知△ABC,A,B,C所對的邊分別為a,b,c,且acsinA<$\overrightarrow{BA}•\overrightarrow{BC}$,則(  )
A.△ABC是鈍角三角形B.△ABC是銳角三角形
C.△ABC是直角三角形D.無法判斷

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.某蛋糕店出售一種蛋糕,這種蛋糕的保質(zhì)期很短,必須當(dāng)天賣掉,否則容易變質(zhì),該蛋糕店每天以每塊16元的成本價(jià)格制作這種蛋糕若干塊,然后以每塊26元的價(jià)格出售,如果當(dāng)天賣不完,剩下的蛋糕只能以每塊6元低價(jià)出售.蛋糕店記錄了100天該種蛋糕的日需求量n(單位:塊,n∈N*)整理得如圖:
(1)若該蛋糕店某一天制作19塊蛋糕,求當(dāng)天的利潤y(單位:元)關(guān)于當(dāng)天需求量n的函數(shù)解析式;
(2)若要求出售“出售的蛋糕塊數(shù)不小于n”的頻率不小于0.4,求n的最大值.
(3)若該蛋糕店這100天每天都制作19塊蛋糕,試計(jì)算這100天蛋糕店所獲利潤的平均數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知m、n是兩條不同的直線,α、β、γ是三個(gè)不同的平面,則下列命題中不正確的序號有( 。
①若α⊥β,α∩β=m,且n⊥m,則n⊥α或n⊥β
②若m不垂直于α,則m不可能垂直于α內(nèi)的無數(shù)條直線
③若α∩β=m,n∥m,且n?α,n?β,則n∥α且n∥β
④若α⊥β,m∥n,n⊥β,則m∥α
A.①②③④B.C.①④D.①②④

查看答案和解析>>

同步練習(xí)冊答案