20.已知函數(shù)$f(x)=\sqrt{3}sin2ωx-cos2ωx$(其中ω∈(0,1)),若f(x)的圖象經(jīng)過點$(\frac{π}{6},0)$,則f(x)在區(qū)間[0,π]上的單調(diào)遞增區(qū)間為$[{0,\frac{2π}{3}}]$.

分析 推導出f(x)=2sin(x-$\frac{π}{6}$),從而求出f(x)的增區(qū)間為[-$\frac{π}{3}$+2kπ,$\frac{2π}{3}$+2kπ],k∈Z,由此能示出f(x)在區(qū)間[0,π]上的單調(diào)遞增區(qū)間.

解答 解:函數(shù)$f(x)=\sqrt{3}sin2ωx-cos2ωx$
=2sin(2ωx-$\frac{π}{6}$),
∵f(x)的圖象經(jīng)過點$(\frac{π}{6},0)$,
∴2sin($\frac{π}{3}$ω-$\frac{π}{6}$)=0,∴$\frac{π}{3}$ω-$\frac{π}{6}$=kπ,k∈Z,
解得ω=3k$+\frac{1}{2}$,
∵ω∈(0,1),∴ω=$\frac{1}{2}$,
∴f(x)=2sin(x-$\frac{π}{6}$),
∴f(x)的增區(qū)間為:-$\frac{π}{2}$+2kπ$≤x-\frac{π}{6}≤$$\frac{π}{2}+2kπ$,k∈z,
整理,得-$\frac{π}{3}$+2kπ≤x≤$\frac{2π}{3}$+2kπ,k∈Z,
∴f(x)在區(qū)間[0,π]上的單調(diào)遞增區(qū)間為$[{0,\frac{2π}{3}}]$.
故答案為:$[{0,\frac{2π}{3}}]$.

點評 本題考查三角函數(shù)的增區(qū)間的求法,是中檔題,解題時要認真審題,注意三角函數(shù)圖象及性質(zhì)的合理運用.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

19.不等式2x2-5x-3≥0成立的一個必要不充分條件是( 。
A.x<0或x>2B.x≥0或x≤-2C.x<-1或x>4D.$x≤-\frac{1}{2}$或x≥3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.如圖所示的幾何體QPABCD為一簡單組合體,在底面ABCD中,∠DAB=60°,AD⊥DC,AB⊥BC,QD⊥平面ABCD,PA∥QD,PA=1,AD=AB=QD=2.
(1)求證:平面PAB⊥平面QBC;
(2)求該組合體QPABCD的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知兩個點M(-5,0)和N(5,0),若直線上存在點P,使|PM|-|PN|=6,則稱該直線為“B型直線”.給出下列四條直線:(1)y=x+1;(2)y=2; (3)y=$\frac{4}{3}$x;(4)y=2x+1判斷是“B型直線”的是( 。
A.(1)、(2)B.(2)、(3)C.(1)、(3)D.(2)、(4)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.實數(shù)x,y滿足$\left\{\begin{array}{l}{x-y-1≤0}\\{x+y-3≤0}\\{x≥1}\end{array}\right.$,則目標函數(shù)z=2x-y的最大值為3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知實數(shù)列-1,a,b,c,-2成等比數(shù)列,則abc等于( 。
A.4B.±4C.2$\sqrt{2}$D.-2$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.方程$\sqrt{{{({x-2})}^2}+{y^2}}=\frac{{|{3x-4y+2}|}}{5}$表示的曲線為( 。
A.拋物線B.橢圓C.雙曲線D.直線

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.函數(shù)y=ln(4-x2)+$\sqrt{1-tanx}$的定義域為(-$\frac{π}{2}$,$\frac{π}{4}$]∪($\frac{π}{2}$,2).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.已知f(x)是定義在R上的奇函數(shù)滿足:f(x)=f (x+4),當x∈(0,2)時,f(x)=2x2,則f(7)=-2.

查看答案和解析>>

同步練習冊答案