已知數(shù)列的各項(xiàng)均為正數(shù),其前項(xiàng)和為,且.
⑴求證:數(shù)列是等差數(shù)列;
⑵設(shè),求證:
⑶設(shè),,求.

(1)詳見解析;(2)詳見解析;(3)

解析試題分析:(1)一般數(shù)列問題中出現(xiàn)數(shù)列前的和與其項(xiàng)時(shí),則可利用關(guān)系找出數(shù)列的遞推關(guān)系,本題可從此入手,證明數(shù)列為等差數(shù)列;(2)由(1)可求出,根據(jù)此式的結(jié)構(gòu)特征,可得,利用裂項(xiàng)相消法求其前的和后再予以判斷;(3)根據(jù)數(shù)列的結(jié)構(gòu)特點(diǎn)(等差乘等比型)可用錯(cuò)位相減法求和.證明數(shù)列為等差數(shù)列或等比數(shù)列,應(yīng)緊扣定義,通過對(duì)所給條件變形,得到遞推關(guān)系,而等差乘等比型數(shù)列的求和最常用的就是錯(cuò)位相減法,使用這個(gè)方法在計(jì)算上要有耐心和細(xì)心,注意各項(xiàng)的符號(hào),防止出錯(cuò).
試題解析:⑴證明:,當(dāng)時(shí),,又.            1分
,得,

數(shù)列是以1為首項(xiàng),1為公差的等差數(shù)列;            4分
⑵證明:由⑴知,,

.            8分
,,      ①
         ②
由①-②得
.            12分
考點(diǎn):等差數(shù)列、等比數(shù)列、錯(cuò)位相減法.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

各項(xiàng)均為正數(shù)的數(shù)列中,是數(shù)列的前項(xiàng)和,對(duì)任意,有

(1)求數(shù)列的通項(xiàng)公式;
(2)記,求數(shù)列的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

數(shù)列的通項(xiàng),其前n項(xiàng)和為
(1)求;
(2)求數(shù)列{}的前n項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

數(shù)列的前項(xiàng)和為,且的等差中項(xiàng),等差數(shù)列滿足.
(1)求數(shù)列、的通項(xiàng)公式;
(2)設(shè),數(shù)列的前項(xiàng)和為,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列的前項(xiàng)和,滿足:.
(Ⅰ)求數(shù)列的通項(xiàng)
(Ⅱ)若數(shù)列的滿足,為數(shù)列的前項(xiàng)和,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列的前n項(xiàng)和為,且=-n+20n,n∈N
(Ⅰ)求通項(xiàng);
(Ⅱ)設(shè)是首項(xiàng)為1,公比為3的等比數(shù)列,求數(shù)列的通項(xiàng)公式及其前n項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列的前n項(xiàng)和為,點(diǎn)在直線上.數(shù)列{bn}滿足,前9項(xiàng)和為153.
(Ⅰ)求數(shù)列、的通項(xiàng)公式;
(Ⅱ)設(shè),數(shù)列的前n和為,求使不等式對(duì)一切都成立的最大正整數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列滿足,
(1)求數(shù)列的通項(xiàng)公式;
(2)求數(shù)列的前項(xiàng)和,并求當(dāng)最大時(shí)序號(hào)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列的前項(xiàng)和為,且有.
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)若,求數(shù)列的前項(xiàng)和;
(Ⅲ)若,且數(shù)列 中的 每一項(xiàng)總小于它后面的項(xiàng),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案