4.已知復(fù)數(shù)z滿足zi5=1+2i,則$\overline{z}$在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

分析 利用復(fù)數(shù)的運(yùn)算法則、幾何意義即可得出.

解答 解:∵zi5=1+2i,∴zi=1+2i,∴-i•zi=-i(1+2i),化為:z=2-i.
則$\overline{z}$=2+i在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)(2,1)位于第一象限.
故選:A.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)的運(yùn)算法則、幾何意義,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.等差數(shù)列{an}的前n項(xiàng)和為Sn,若S10=80,a4=5,則a13=( 。
A.19B.21C.23D.25

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知函數(shù)f(x)=lnx+ax2-ax,其中a∈R.
(1)當(dāng)a=0時(shí),求函數(shù)f(x)在x=1處的切線方程;
(2)若函數(shù)f(x)在定義域上有且僅有一個(gè)極值點(diǎn),求實(shí)數(shù)a的取值范圍;
(3)若對(duì)任意x∈[1,+∞),f(x)≥0恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知等差數(shù)列{an}滿足:a3=7,a5+a7=26,{an}的前n項(xiàng)和為Sn
(1)求an及Sn
(2)求數(shù)列$\{\frac{1}{{a}_{n}{a}_{n+1}}\}$的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.若多項(xiàng)式x+x11=a0+a1(x+1)+a2(x+1)2+…+a10(x+1)10+a11(x+1)11,則a10的值為-11.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.?dāng)?shù)列1$\frac{1}{2}$,3$\frac{1}{4}$,5$\frac{1}{8}$,7$\frac{1}{16}$,…,(2n-1)+$\frac{1}{{2}^{n}}$,…的前n項(xiàng)和Sn的值等于n2+1-$\frac{1}{{2}^{n}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.在△ABC中,三內(nèi)角A,B,C的對(duì)邊分別為a,b,c,若-$\frac{1}{2}$tanA=sinBcosC+cosBsinC,且△ABC的面積為2$\sqrt{3}$.
(1)求bc的值;
(2)若b=2c,求a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.在平面直角坐標(biāo)系xoy中,直線${C_1}:\sqrt{3}x+y-4=0$,曲線${C_2}:\left\{\begin{array}{l}x=cosφ\(chéng)\ y=1+sinφ\(chéng)end{array}\right.(φ$為參數(shù)),以以坐標(biāo)原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸,建立極坐標(biāo)系.
(I)求C1,C2的極坐標(biāo)方程;
(II)若曲線C3的極坐標(biāo)方程為$θ=α(ρ>0,0<α<\frac{π}{2})$,且曲線C3分別交C1,C2于點(diǎn)A,B兩點(diǎn),求$\frac{OB}{OA}$的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,a1=1,且對(duì)任意正整數(shù)n,滿足2an+1+Sn-2=0.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=nan,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

同步練習(xí)冊(cè)答案