每年的三月十二日,是中國(guó)的植樹節(jié),林管部門在植樹前,為保證樹苗的質(zhì)量,都會(huì)在植樹前對(duì)樹苗進(jìn)行檢測(cè).現(xiàn)從甲、乙兩種樹苗中各抽測(cè)了10株樹苗的高度,規(guī)定高于128厘米的樹苗為“良種樹苗”,測(cè)得高度如下(單位:厘米):
甲:137,121,131,120,129,119,132,123,125,133;
乙:110,130,147,127,146,114,126,110,144,146.
(1)根據(jù)抽測(cè)結(jié)果,畫出甲、乙兩種樹苗高度的莖葉圖,并根據(jù)你填寫的莖葉圖,對(duì)甲、乙兩種樹苗的高度作比較,寫出對(duì)兩種樹苗高度的統(tǒng)計(jì)結(jié)論;
(2)設(shè)抽測(cè)的10株甲種樹苗高度平均值為x,將這10株樹苗的高度依次輸入按程序框圖進(jìn)行運(yùn)算(如圖),問輸出的S大小為多少?并說明S的統(tǒng)計(jì)學(xué)意義;
(3)若小王在甲種樹苗中隨機(jī)領(lǐng)取了5株進(jìn)行種植,用樣本的頻率分布估計(jì)總體分布,求小王領(lǐng)取到的“良種樹苗”的株數(shù)X的分布列.

(1)參考解析; (2)35,方差;(3)參考解析

解析試題分析:(1)根據(jù)已知的數(shù)據(jù)畫出甲、乙兩種樹苗高度的莖葉圖,通過莖葉圖從幾個(gè)統(tǒng)計(jì)知識(shí)方面可得到兩種數(shù)高的比較,比如樹苗的平均高度;長(zhǎng)得更整齊度;中位數(shù)的值;高度基本上是對(duì)稱的,而且大多數(shù)集中在均值附近.
(2)由程序框圖可知,其運(yùn)算的結(jié)果是這十棵樹苗的方差,方差s表示的統(tǒng)計(jì)的意義為描述樹苗高度的離散程度的量.S值越小,表示樹苗長(zhǎng)得越整齊,S值越大,表示樹苗長(zhǎng)得越參差不齊.
(3)在甲種樹苗中隨機(jī)領(lǐng)取了5株進(jìn)行種植,取到的“良種樹苗”的株數(shù)X同有0,1,2,3,4,5這六種情況,所以可列出X的分布列.
(1)莖葉圖如圖所示:(2分)


 

9
0 1 3 5 9
1 2 3 7
11
12
13
14
0 0 4
6 7
0
4 6 6 7
 
統(tǒng)計(jì)結(jié)論:①甲種樹苗的平均高度小于乙種樹苗的平均高度;
②甲種樹苗比乙種樹苗長(zhǎng)得更整齊;
③甲種樹苗高度的中位數(shù)為127,乙種樹苗高度的中位數(shù)為128.5;
④甲種樹苗的高度基本上是對(duì)稱的,而且大多數(shù)集中在均值附近,乙種樹苗的高度分布較為分散    4分(每寫出一個(gè)統(tǒng)計(jì)結(jié)論得1分)
(2)依題意,x=127,S=35.                         (6分)
S表示10株甲種樹苗高度的方差,是描述樹苗高度的離散程度的量.S值越小,表示樹苗長(zhǎng)得越整齊,S值越大,表示樹苗長(zhǎng)得越參差不齊.
(3)由題意可知,領(lǐng)取一株甲種樹苗得到“良種樹苗”的概率為,則X~B, (10分)
所以隨機(jī)變量X的分布列為
X
0
1
2
3
4
5
P






                                                         13分
考點(diǎn):1.統(tǒng)計(jì)的知識(shí).2.概率的知識(shí).3.莖葉圖.4.分布列問題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

假設(shè)某班級(jí)教室共有4扇窗戶,在每天上午第三節(jié)課上課預(yù)備鈴聲響起時(shí),每扇窗戶或被敞開或被關(guān)閉,且概率均為0.5.記此時(shí)教室里敞開的窗戶個(gè)數(shù)為X.
(1)求X的分布列;
(2)若此時(shí)教室里有兩扇或兩扇以上的窗戶被關(guān)閉,班長(zhǎng)就會(huì)將關(guān)閉的窗戶全部敞開,否則維持原狀不變.記每天上午第三節(jié)課上課時(shí)該教室里敞開的窗戶個(gè)數(shù)為Y,求Y的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

隨機(jī)觀測(cè)生產(chǎn)某種零件的某工廠名工人的日加工零件數(shù)(單位:件),獲得數(shù)據(jù)如下:、、、、、、、、、、、、、、、、、、、、,根據(jù)上述數(shù)據(jù)得到樣本的頻率分布表如下:

分組
頻數(shù)
頻率















(1)確定樣本頻率分布表中、、的值;
(2)根據(jù)上述頻率分布表,畫出樣本頻率分布直方圖;
(3)根據(jù)樣本頻率分布直方圖,求在該廠任取人,至少有人的日加工零件數(shù)落在區(qū)間的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(13分)(2011•陜西)如圖,A地到火車站共有兩條路徑L1和L2,現(xiàn)隨機(jī)抽取100位從A地到火車站的人進(jìn)行調(diào)查,調(diào)查結(jié)果如下:

所用時(shí)間(分鐘)
10~20
20~30
30~40
40~50
50~60
選擇L1的人數(shù)
6
12
18
12
12
選擇L2的人數(shù)
0
4
16
16
4

(Ⅰ)試估計(jì)40分鐘內(nèi)不能         趕到火車站的概率;
(Ⅱ)分別求通過路徑L1和L2所用時(shí)間落在上表中各時(shí)間段內(nèi)的頻率;
(Ⅲ)現(xiàn)甲、乙兩人分別有40分鐘和50分鐘時(shí)間用于趕往火車站,為了盡量大可能在允許的時(shí)間內(nèi)趕到火車站,試通過計(jì)算說明,他們應(yīng)如何選擇各自的 路徑.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某公司為招聘新員工設(shè)計(jì)了一個(gè)面試方案:應(yīng)聘者從道備選題中一次性隨機(jī)抽取道題,按照題目要求獨(dú)立完成.規(guī)定:至少正確完成其中道題的便可通過.已知道備選題中應(yīng)聘者甲有道題能正確完成,道題不能完成;應(yīng)聘者乙每題正確完成的概率都是,且每題正確完成與否互不影響.
(1)分別求甲、乙兩人正確完成面試題數(shù)的分布列,并計(jì)算其數(shù)學(xué)期望;
(2)請(qǐng)分析比較甲、乙兩人誰(shuí)的面試通過的可能性大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分9分)一個(gè)袋子中有3個(gè)紅球和2個(gè)黃球,5個(gè)球除顏色外完全相同,甲、乙兩人先后不放回地從中各取1個(gè)球.規(guī)定:若兩人取得的球的顏色相同則甲獲勝,否則乙獲勝.
(1) 求兩個(gè)人都取到黃球的概率;
(2) 計(jì)算甲獲勝的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某超市在節(jié)日期間進(jìn)行有獎(jiǎng)促銷,凡在該超市購(gòu)物滿200元的顧客,將獲得一次摸獎(jiǎng)機(jī)會(huì),規(guī)則如下:
獎(jiǎng)盒中放有除顏色外完全相同的1個(gè)紅色球,1個(gè)黃色球,1個(gè)藍(lán)色球和1個(gè)黑色球.顧客不放回的每次摸出1個(gè)球,直至摸到黑色球停止摸獎(jiǎng).規(guī)定摸到紅色球獎(jiǎng)勵(lì)10元,摸到黃色球或藍(lán)色球獎(jiǎng)勵(lì)5元,摸到黑色球無(wú)獎(jiǎng)勵(lì).
(1)求一名顧客摸球3次停止摸獎(jiǎng)的概率;
(2)記X為一名顧客摸獎(jiǎng)獲得的獎(jiǎng)金數(shù)額,求隨機(jī)變量X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

近年空氣質(zhì)量逐步惡化,霧霾天氣現(xiàn)象出現(xiàn)增多,大氣污染危害加重,大氣污染可引起心悸、呼吸困難等心肺疾。疄榱私饽呈行姆渭膊∈欠衽c性別有關(guān),在某醫(yī)院隨機(jī)對(duì)入院的50人進(jìn)行了問卷調(diào)查得到了如下的列聯(lián)表:

 
患心肺疾病
不患心肺疾病
合計(jì)

 
5
 

10
 
 
合計(jì)
 
 
50
 
已知在全部50人中隨機(jī)抽取1人,抽到患心肺疾病的人的概率為.
(1)請(qǐng)將上面的列聯(lián)表補(bǔ)充完整;
(2)是否有99.5%的把握認(rèn)為患心肺疾病與性別有關(guān)?說明你的理由;
臨界值表供參考:
P(K2≥k)
0.15
0.10
0.05
0.025
0.010
0.005
0.001
k
2.072
2.706
3.841
5.024
6.635
7.879
10.828
 
參考公式:其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

甲、乙兩名射手在一次射擊中的得分為兩個(gè)相互獨(dú)立的隨機(jī)變量ξ和η,且ξ、η分布列為

ξ
1
2
3
P
a
0.1
0.6
 
η
1
2
3
P
0.3
b
0.3
(1)求a、b的值;
(2)計(jì)算ξ、η的期望和方差,并以此分析甲、乙的技術(shù)狀況.

查看答案和解析>>

同步練習(xí)冊(cè)答案