1.已知點(diǎn)A(1,1),B(-2,2),直線l過點(diǎn)P(-1,-1)且與線段AB始終有交點(diǎn),則直線l的斜率k的取值范圍為k≤-3,或k≥1.

分析 由題意畫出圖形,數(shù)形結(jié)合得答案.

解答 解:如圖,

∵A(1,1),B(-2,2),直線l過點(diǎn)P(-1,-1),
又${k}_{PA}=1,{k}_{PB}=\frac{2-(-1)}{-2-(-1)}=-3$,
∴直線l的斜率k的取值范圍為k≤-3,或k≥1.
故答案為:k≤-3,或k≥1.

點(diǎn)評(píng) 本題考查直線的斜率,考查了數(shù)形結(jié)合的解題思想方法,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.若直線經(jīng)過A(1,0)、B(0,-1)兩點(diǎn),則直線AB的傾斜角為$\frac{π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知f(x)=2sinx+cosx,若函數(shù)g(x)=f(x)-m在x∈(0,π)上有兩個(gè)不同零點(diǎn)α、β,則cos(α+β)=( 。
A.$\frac{4}{5}$B.$\frac{3}{5}$C.$-\frac{4}{5}$D.$-\frac{3}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知函數(shù)$f(x)=\left\{\begin{array}{l}{e^{|x-1|}}\;\;,\;x>0\\-{x^2}-2x+1\;,x≤0\end{array}\right.$,若關(guān)于x的方程f2(x)-3f(x)+a=0(a∈R)有8個(gè)不等的實(shí)數(shù)根,則a的取值范圍是( 。
A.$(0,\frac{1}{4})$B.$(\frac{1}{3},3)$C.(1,2)D.$(2,\frac{9}{4})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.不等式(x-1)(x+1)(x-2)<0的解集為(-∞,-1)∪(1,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且${cos^2}\frac{B}{2}=\frac{a+c}{2c}$,則△ABC的形狀為( 。
A.直角三角形B.等腰三角形
C.等腰三角形或直角三角形D.等腰直角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.下列各組中的兩個(gè)函數(shù)是同一函數(shù)的為( 。
A.f(x)=1,g(x)=x0B.f(x)=$\root{3}{x}$,g(x)=$\frac{{x}^{2}}{x}$C.f(x)=lnex,g(x)=elnxD.f(x)=$\frac{1}{|x|}$,g(x)=$\frac{1}{\sqrt{{x}^{2}}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知P為△ABC所在平面外一點(diǎn),PA⊥PB,PB⊥PC,PC⊥PA,PH⊥平面 ABC,H,則H為△ABC的( 。
A.重心B.垂心C.外心D.內(nèi)心

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.圓x2+y2+4x-2y-1=0上存在兩點(diǎn)關(guān)于直線ax-2by+1=0(a>0,b>0)對(duì)稱,則$\frac{1}{a}$+$\frac{4}$的最小值為( 。
A.3+2$\sqrt{2}$B.9C.16D.18

查看答案和解析>>

同步練習(xí)冊(cè)答案