13.函數(shù)$y=sin(2x+\frac{π}{3})-1$,$x∈(0,\frac{π}{3})$的值域為(0,1].

分析 由條件利用正弦函數(shù)的定義域和值域,求得函數(shù)的值域.

解答 解:∵x∈(0,$\frac{π}{3}$),∴2x+$\frac{π}{3}$∈($\frac{π}{3}$,π),∴sin(2x+$\frac{π}{3}$)∈(0,1],
故答案為:(0,1].

點評 本題主要考查正弦函數(shù)的定義域和值域,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

18.已知△ABC中,$\frac{c-b}{c-a}$=$\frac{sinA}{sinC+sinB}$,則B=( 。
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{3π}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.如圖是一個水平放置的透明無蓋的正方體容器,高12cm,將一個球放在容器口,再向容器內注水,當球面恰好接觸水面時測得水深為8cm,如果不計容器的厚度,則球的體積為(  )
A.$\frac{169π}{6}$cm3B.$\frac{676π}{3}$cm3C.$\frac{8788π}{3}$cm3D.$\frac{2197π}{6}$cm3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知動點M到點(8,0)的距離等于M到點(2,0)的距離的2倍.
(1)求動點M的軌跡C的方程;
(2)若直線y=kx-5與軌跡C沒有交點,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.如圖,在四棱錐E-ABCD中,底面ABCD為正方形,AE⊥平面CDE,已知AE=DE=1,F(xiàn)為線段DE中點.
(1)求證:CD⊥平面ADE;
(2)求V三棱錐E-BCF.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.i為虛數(shù)單位,則(1+i552=(  )
A.4B.0C.2iD.-2i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知菱形ABCD的兩個頂點坐標:A(-2,1),C(0,5),則對角線BD所在直線方程為( 。
A.x+2y-5=0B.2x+y-5=0C.x-2y+5=0D.2x-y+5=0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.x2+(y-2)2=0是x(y-2)=0的(  )
A.必要不充分條件B.充分不必要條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知等差數(shù)列{an}的前n項和為Sn,且S4=10,a20=20.
(1)求數(shù)列{an}的通項公式;
(2)設${b_m}=\frac{a_n}{{{a_{n+1}}}}$,是否存在m、k(k>m,k,m∈N*),使得b1、bm、bk成等差數(shù)列.

查看答案和解析>>

同步練習冊答案