【題目】已知命題p:“函數(shù) 在R上有零點”,命題q:函數(shù)f(x)= 在區(qū)間(1,+∞)內(nèi)是減函數(shù),若p∧q為真命題,則實數(shù)m的取值范圍為 .
【答案】[ ,1]
【解析】解:函數(shù) 在R上有零點, 即﹣ =m2﹣ + 有解,
令g(x)=﹣ ≤﹣ ,
故m2﹣ + ≤﹣ ,
解得: ≤m≤2;
故p為真時:m∈[ ,2];
函數(shù)f(x)= 在區(qū)間(1,+∞)內(nèi)是減函數(shù),
則m≤1,
若p∧q為真命題,則p真q真,
故 ,
所以答案是:[ ,1].
【考點精析】通過靈活運用復合命題的真假,掌握“或”、 “且”、 “非”的真值判斷:“非p”形式復合命題的真假與F的真假相反;“p且q”形式復合命題當P與q同為真時為真,其他情況時為假;“p或q”形式復合命題當p與q同為假時為假,其他情況時為真即可以解答此題.
科目:高中數(shù)學 來源: 題型:
【題目】已知a∈R,函數(shù)f(x)=x|x﹣a|.
(1)當a=0時,寫出函數(shù)y=f(x)的單調遞增區(qū)間;
(2)當a=1時,討論函數(shù)y=f(x)的奇偶性;
(3)設a≠0,函數(shù)y=f(x)在(m,n)上既有最大值又有最小值,請分別求出m,n的取值范圍(用a表示).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線C:y2=2px(p>0)的焦點為F并且經(jīng)過點A(1,﹣2).
(1)求拋物線C的方程;
(2)過F作傾斜角為45°的直線l,交拋物線C于M,N兩點,O為坐標原點,求△OMN的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】直四棱柱ABCD﹣A1B1C1D1的底面ABCD是菱形,∠ADC=120°,AA1=AB=1,點O1、O分別是上下底菱形對角線的交點.
(1)求證:A1O∥平面CB1D1;
(2)求點O到平面CB1D1的距離.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若實數(shù)a,b,c滿足loga3<logb3<logc3,則下列關系中不可能成立的( )
A.a<b<c
B.b<a<c
C.c<b<a
D.a<c<b
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知{an}是等差數(shù)列,{bn}是等比數(shù)列,Sn為數(shù)列{an}的前n項和,a1=b1=1,且b3S3=36,b2S2=8(n∈N+).
(1)求an和bn;
(2)若an<an+1 , 求數(shù)列 的前n項和Tn .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線C:y2=2px上一點 到焦點F距離為1,
(1)求拋物線C的方程;
(2)直線l過點(0,2)與拋物線交于M,N兩點,若OM⊥ON,求直線的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com