【題目】某企業(yè)為了解下屬某部門對(duì)本企業(yè)職工的服務(wù)情況,隨機(jī)訪問(wèn)50名職工,根據(jù)這50名職工對(duì)該部門的評(píng)分,繪制頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組區(qū)間為
(Ⅰ)求頻率分布圖中a的值;
(Ⅱ)估計(jì)該企業(yè)的職工對(duì)該部門評(píng)分不低于80的概率;
(Ⅲ)從評(píng)分在的受訪職工中,隨機(jī)抽取2人,求此2人評(píng)分都在的概率。

【答案】答案:(I)0.006;(II)0.4;(III).
【解析】(I)因?yàn)椋?.004+a+0.0018+0.022x2+0.028)x10=1,所以a=0.006。
(Ⅱ)由所給頻率分布直方圖知,50名受訪職工評(píng)分不低于80的頻率為(0.022+0.0180)×10=0.4,所以該企業(yè)職工對(duì)該部門評(píng)分不低于80的概率的估計(jì)值為0.4;
(III)受訪職工評(píng)分在的有:50×0.006×10=3(人)即為;受訪職工評(píng)分在的有:50×0.004×40=2(人)即為,從這5名受訪職工中隨機(jī)抽取2人,所有可能的結(jié)果共有10種,它們是,又因?yàn)樗槿?人的評(píng)分都在的結(jié)果有1種,即,故所求的概率為,.
利用頻率分布直方圖解題的時(shí),注意其表達(dá)的意義,同時(shí)要理解頻率是概率的估計(jì)值這一基礎(chǔ)知識(shí);在利用古典概型解題時(shí),要注意列出所有的基本事件,千萬(wàn)不可出現(xiàn)重、漏的情況。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(2015·四川)如圖,A , BCD為平面四邊形ABCD的四個(gè)內(nèi)角.

(1)證明:tan=
(2)若A+C=180°, AB=6, BC=3, CD=4, AD=5, 求tan+tan+tan+tan的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(2015·山東) 如圖,三棱臺(tái)-中,分別為,的中點(diǎn).

(1)求證:平面;
(2)若,,求證:平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(2015·湖北)已知數(shù)列的各項(xiàng)均為正數(shù), , 為自然對(duì)數(shù)的底數(shù).
(1)求函數(shù)的單調(diào)區(qū)間,并比較的大。
(2)計(jì)算 , , , 由此推測(cè)計(jì)算的公式,并給出證明;
(3)令 , 數(shù)列的前項(xiàng)和分別記為,, 證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(2015福建)已知函數(shù)=.
(1)求函數(shù)的單調(diào)遞增區(qū)間;
(2)證明:當(dāng)x>1時(shí),;
(3)確定實(shí)數(shù)k的所有可能取值,使得存在,當(dāng)時(shí),恒有>

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)
(I)求f(x)的最小正周期;
(II)求f(x)在區(qū)間上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若n是一個(gè)三位正整數(shù),且n的個(gè)位數(shù)字大于十位數(shù)字,十位數(shù)字大于百位數(shù)字,則稱n為“三位遞增數(shù)”(如137,359,567等).在某次數(shù)學(xué)趣味活動(dòng)中,每位參加者需從所有的“三位遞增數(shù)”中隨機(jī)抽取1個(gè)數(shù),且只能抽取一次.得分規(guī)則如下:若抽取的“三位遞增數(shù)”的三個(gè)數(shù)字之積不能被5整除,參加者得0分;若能被5整除,但不能被10整除,得-1分;若能被10整除,得1分.
(1)寫出所有個(gè)位數(shù)字是5的“三位遞增數(shù)” ;
(2)若甲參加活動(dòng),求甲得分X的分布列和數(shù)學(xué)期望EX.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列是遞增的等比數(shù)列,a1+a4=9,a2a3=8,則數(shù)列的前n項(xiàng)和等于,解得a1=1,a4=8,或者a1=8,a4=1,但由于是遞增數(shù)列,即a1=1,a4=8,即q3==8,所以q=2.因而數(shù)列的前n項(xiàng)和為 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}滿足a1=1,an+1=3an+1.
(1)證明{an+ }是等比數(shù)列,并求{an}的通項(xiàng)公式;
(2)證明: + +…+

查看答案和解析>>

同步練習(xí)冊(cè)答案