如圖所示,拋物線C1:x2=4y,C2:x2=-2py(p>0).點M(x0,y0)在拋物線C2上,過M作C1的切線,切點為A,B(M為原點O時,A,B重合于O).當x0=1-時,切線MA的斜率為-.

(1)求p的值;
(2)當M在C2上運動時,求線段AB中點N的軌跡方程(A,B重合于O時,中點為O).
(1)2   (2) x2=y

解:(1)因為拋物線C1:x2=4y上任意一點(x,y)的切線斜率為y′=,且切線MA的斜率為-,
所以A點坐標為.
故切線MA的方程為y=-(x+1)+ .
因為點M(1-y0)在切線MA及拋物線C2上,于是
y0=-(2-)+=-,                   ①
y0=-=-.                       ②
由①②得p=2.
(2)設N(x,y),A,B,
x1≠x2,由N為線段AB中點知
x=,                                       ③
y=.                                       ④
切線MA,MB的方程為
y=(x-x1)+  ,                                 ⑤
y=(x-x2)+  .                                 ⑥
由⑤⑥得MA,MB的交點M(x0,y0)的坐標為
x0=,y0=.
因為點M(x0,y0)在C2上,
=-4y0,
所以x1x2=-.                                ⑦
由③④⑦得
x2=y,x≠0.
當x1=x2時,A,B重合于原點O,AB中點N為O,坐標滿足x2=y.
因此AB中點N的軌跡方程為x2=y.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知拋物線上的任意一點到該拋物線焦點的距離比該點到軸的距離多1.

(1)求的值;
(2)如圖所示,過定點(2,0)且互相垂直的兩條直線、分別與該拋物線分別交于、、四點.
(i)求四邊形面積的最小值;
(ii)設線段、的中點分別為兩點,試問:直線是否過定點?若是,求出定點坐標;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知E(2,2)是拋物線C:y2=2px上一點,經(jīng)過點(2,0)的直線l與拋物線C交于A,B兩點(不同于點E),直線EA,EB分別交直線x=-2于點M,N.
(1)求拋物線方程及其焦點坐標;
(2)已知O為原點,求證:∠MON為定值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

為拋物線的焦點,為該拋物線上三點,若,則(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,拋物線E:y2=4x的焦點為F,準線l與x軸的交點為A.點C在拋物線E上,以C為圓心,|CO|為半徑作圓,設圓C與準線l交于不同的兩點M,N.

(1)若點C的縱坐標為2,求|MN|;
(2)若|AF|2=|AM|·|AN|,求圓C的半徑.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設拋物線C:y2=4x的焦點為F,直線l過F且與C交于A,B兩點.若|AF|=3|BF|,則l的方程為(  )
A.y=x-1或y=-x+1
B.y=(x-1)或y=-(x-1)
C.y=(x-1)或y=-(x-1)
D.y=(x-1)或y=-(x-1)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

拋物線y2=8x的焦點到準線的距離是(  )
A.1B.2C.4D.8

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知直線y=-2上有一個動點Q,過點Q作直線l1垂直于x軸,動點P在l1上,且滿足OP⊥OQ(O為坐標原點),記點P的軌跡為C.
(1)求曲線C的方程.
(2)若直線l2是曲線C的一條切線,當點(0,2)到直線l2的距離最短時,求直線l2的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

為拋物線上的動弦,且, 則弦的中點軸的最小距離為
A.2B.C.1D.

查看答案和解析>>

同步練習冊答案