10.命題p:若a<b,則?c∈R,ac2<bc2;命題q:?x0>0,使得x0-1+lnx0=0,則下列命題為真命題的是( 。
A.p∧qB.p∨(¬q)C.(¬p)∧qD.(¬p)∧(¬q)

分析 先判斷命題p,q的真假,進(jìn)而根據(jù)復(fù)合命題真假判斷的真值表,可得答案.

解答 解:若a<b,則?c∈R,ac2<bc2,在c=0時(shí)不成立,故p是假命題;
?x0=1>0,使得x0-1+lnx0=0,故命題q為真命題,
故命題p∧q,p∨(¬q),(¬p)∧(¬q)是假命題;
命題(¬p)∧q是真命題,
故選:C

點(diǎn)評(píng) 本題以命題的真假判斷與應(yīng)用為載體,考查了復(fù)合命題,不等式的基本性質(zhì),對(duì)數(shù)運(yùn)算等知識(shí)點(diǎn),難度中檔.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知函數(shù)f(x)=ex,x>0,則曲線y=f(x)與曲線$y=\frac{e^2}{4}{x^2}$的公共點(diǎn)的個(gè)數(shù)為( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知函數(shù)f(x)=|x-a|.
(1)若a=2,解不等式:f(x)≥3-|x-1|;
(2)若f(x)≤1的解集為[2,4],且m+2n=a(m>0,n>0),求m2+4n2的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.在極坐標(biāo)系中,直線C1的極坐標(biāo)方程為$ρsin(θ+\frac{π}{4})=\sqrt{2}$.若以極點(diǎn)為原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系xOy,則直線C1的直角坐標(biāo)方程為x+y-2=0;曲線C2的方程為$\left\{\begin{array}{l}x=cost\\ y=1+sint\end{array}\right.$(t為參數(shù)),則C2被 C1截得的弦長(zhǎng)為$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知直線l過(guò)定點(diǎn)(0,1),則“直線l與圓(x-2)2+y2=4相切”是“直線l的斜率為$\frac{3}{4}$”的(  )
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知角α的始邊是x軸非負(fù)半軸.其終邊經(jīng)過(guò)點(diǎn)$P(-\frac{3}{5},-\frac{4}{5})$,則tanα的值為$\frac{4}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知在(-∞,1]上遞減的函數(shù)f(x)=x2-2tx+1,且對(duì)任意的x1,x2∈[0,t+1],總有|f(x1)-f(x2)|≤2,則實(shí)數(shù)t的取值范圍為( 。
A.$[-\sqrt{2},\sqrt{2}]$B.$[1,\sqrt{2}]$C.[2,3]D.[1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知定點(diǎn)E(-1,0),F(xiàn)(1,0),動(dòng)點(diǎn)P(x,y)滿足|PE|+|PF|=4,記動(dòng)點(diǎn)P的軌跡為曲線G.
(Ⅰ)求曲線G的標(biāo)準(zhǔn)方程;
(Ⅱ)過(guò)點(diǎn)F作不垂直于坐標(biāo)軸的直線l,交曲線G于A、B兩點(diǎn),點(diǎn)C是點(diǎn)A關(guān)于x軸的對(duì)稱點(diǎn).
(i)求證:直線BC恒過(guò)x軸上的定點(diǎn)N,并求出定點(diǎn)N的坐標(biāo);
(ii)求△ABN的面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知方程$\frac{x^2}{m}+\frac{y^2}{m-4}=1$表示焦點(diǎn)在x軸上的雙曲線,則m的取值范圍是(0,4).

查看答案和解析>>

同步練習(xí)冊(cè)答案