已知AB是⊙O的弦,P是AB上一點,AB=6
2
,PA=4
2
,OP=3,則⊙O的半徑R=
 

考點:與圓有關(guān)的比例線段
專題:立體幾何
分析:過點O作OC⊥AB,交AB于點C,連結(jié)OA,由垂徑定理和勾股定理求出OC⊥AB,PC=PA-AC=
2
,OC=
7
,由此能求出⊙O的半徑R.
解答: 解:過點O作OC⊥AB,交AB于點C,連結(jié)OA,
∵AB是⊙O的弦,P是AB上一點,AB=6
2
,PA=4
2
,OP=3,
∴OC⊥AB,PC=PA-AC=4
2
-
6
2
2
=
2
,
∴OC=
OP2-PC2
=
9-2
=
7

∴R=OA=
OC2+AC2
=
7+18
=5.
故答案為:5.
點評:本題考查圓的半徑的求法,是基礎(chǔ)題,解題時要認真審題,注意垂徑定理和勾股定理的合理運用.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

已知集合M={x|x>-1},那么下列結(jié)論正確的是( 。
A、0⊆MB、{0}∈M
C、ϕ∈MD、{0}⊆M

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)全集U={1,2,3,4,5,6},集合A={1,2,3,5},B={2,4,6},則(∁UA)∩B為( 。
A、{2}
B、{4,6}
C、{1,3,5}
D、{2,4,6}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

化簡:
tan(π-α)sin2(α+
π
2
)cos(2π-α)
cos3(-α-π)tan(α-2π)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

“a=-3”是“圓x2+y2=1與圓(x+a)2+y2=4相切”的( 。
A、充分而不必要條件
B、必要而不充分條件
C、充分必要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線過點(
3
,2),且它的漸近線方程是y=±2x,則此雙曲線的方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)橢圓
x2
4
+
y2
a2
=1和雙曲線
x2
a2
-
y2
b2
=1有共同的焦點,連接橢圓的焦點和短軸的一個端點所得直線和雙曲線的一條漸近線平行,設(shè)雙曲線的離心率為e,則e2等于(  )
A、
5
+1
2
B、
3
+1
2
C、
3
D、
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的首項為a1=5,前n項和為Sn,且Sn+1=2Sn+n+5(n∈N+).
(1)證明:數(shù)列{an+1}是等比數(shù)列,并求數(shù)列{an}的通項公式;
(2)設(shè)關(guān)于x的函數(shù)f(x)=(a1+1)x+(a2+1)x2+…+(an+1)xn,求函數(shù)f(x)在點x=1處的導(dǎo)致f′(1)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義:若m-
1
2
<x≤m+
1
2
(其中m是整數(shù)),則m叫做距實數(shù)x最近的整數(shù),記作(x),即(x)=m,對于函數(shù)f(x)=|x-(x)|的五個命題,其中正確的有
 
(寫出所有正確命題的序號).
①函數(shù)y=f(x)的值域是[0,+∞);
②函數(shù)y=f(x)是偶函數(shù);
③函數(shù)y=f(x)是周期函數(shù)且最小正周期是1;
④函數(shù)y=f(x)的遞增區(qū)間是[k,k+
1
2
],k∈z;
⑤函數(shù)y=f(x)-lgx有4個零點.

查看答案和解析>>

同步練習冊答案